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The standard model of irreversible investment under uncertainty considers only the level of 
the cash flow that could be obtained through the investment. We present a general model that 
includes as state variables both the level and the growth rate of the cash flow, while the timing 
and size of the one-time investment are discretionary. As an illustration, we consider an investor 
with the exclusive right to develop a vacant piece of land, where the timing of the investment 
and the scale of the property are chosen optimally. We demonstrate that construction is optimally 
postponed when prospects are gloomy, but also when they are bright. Indeed, under sufficiently 
high growth it is, perversely, never optimal to invest. Under a cost-of-capital argument, the 
rational response to predictable growth combined with flexible investment conditions is to keep 
land vacant for extended periods, which may explain why construction in superstar cities often 
appears sluggish. Our proposed model can be used in all investment decisions, irrespective 
of sector, where the assumptions of predictable growth and a one-off, flexible but otherwise 
irreversible investment are met.

1. Introduction

Consider a real-estate investor with the exclusive right to develop a vacant plot of land in Manhattan in the 1980s. For simplicity, 
assume she can either erect a six- or a twenty-storey building. Rental rates justify erecting the small but not the large building, as the 
latter is disproportionately expensive: the high cost of capital would render the net operating cash flow (the rental income minus the 
cost of capital) negative for some time. However, the city is booming and analysts expect rents to keep rising in the foreseeable future. 
The investor fears she may come to regret building the low-rise, which cannot easily be converted into a high-rise even as demand 
skyrockets. The taller property would allow her to capitalise on the anticipated future growth, while exposing her to an initial net 
operating loss due to the high capital cost. The solution to this dilemma is to consider a third option: to postpone investment. This 
would allow the investor to avoid both the short-term loss involved in building big and the long-term regret associated with erecting 
a smaller building. Counterintuitively, the higher the anticipated growth, the more attractive it is to wait—in lay terms, don’t build 
when demand is booming.

This article formalises the above logic by presenting a general model with an investor who owns one unit of a fixed, unalterable 
factor of production (e.g. land) and is considering investing in a second factor (e.g. construction) to yield a variable amount of 
production capacity (e.g. usable floorspace). Our main finding that postponing investment is optimal under high growth relies on 
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two critical assumptions: (i) the growth rate of the resulting cash-flow stream is to some extent predictable, while (ii) the one-off 
investment is flexible a priori but fixed once realised. In the case of real estate, the development of rental rates over time is assumed 
to be somewhat predictable, while construction decisions concerning a single plot of land are assumed to be flexible but otherwise 
irreversible.

The finding that investment is suboptimal when growth is high remains valid when this growth is entirely predictable (i.e. non-
stochastic), differentiating the effect identified here from the standard real-options effect (e.g. Dixit and Pindyck, 1994). To develop 
the intuition, the first half of this article focuses on the case of deterministic growth, before allowing stochasticity in both cash-flow 
levels and growth rates. Although the term option value suggests uncertainty, we refer to the option value of the fixed factor (e.g. 
land) in both the deterministic and stochastic contexts. Our rationale is that, in both cases, the decision maker is faced with the 
option (but never the obligation) to invest.

Murray (2020) found that valuable land near fast-growing cities remains vacant for extended periods. Some authors (e.g. Glaeser 
et al., 2005 and Glaeser and Ward, 2009) attribute this to regulatory inefficiencies and rent-seeking behaviour. On the contrary, we 
find that postponing investment is the rational response in the face of high growth and flexible but irreversible investment. In such 
circumstances, to capitalise on the anticipation of future growth, a substantially larger investment would seem to be desirable. The 
resulting amplified capital costs will, however, initially yield negative operating cash flows—a cost-of-capital argument that stymies 
the desire to ‘build big’. By waiting for the expected growth to materialise, a larger investment can instead be made at a later time, 
which will instantly yield positive operating cash flows. This finding should be relevant in all investment decisions, irrespective of 
sector, for which our critical assumptions (i) and (ii) are reasonable approximations.

Our first assumption—growth being partially or fully predictable—may be satisfied in many sectors. In financial markets, for 
example, the observed variety in price-dividend ratios across firms reflects the variety in predicted growth rates. In the case of urban 
development, it is well known that population growth rates in cities mean-revert only slowly, at a rate of ∼15% per annum or less 
for urban regions in the United States (Campbell et al., 2009, table 3; Desmet and Rappaport, 2017), with similar figures in other 
countries. A city that is currently growing faster than the nationwide average can therefore be expected to continue doing so for ∼7
years. Rental rates at a fixed location within the city tend to be positively related to the city’s population (e.g. Albouy et al., 2018; 
Combes et al., 2019; Davis et al., 2021). Persistence in population growth thus implies—and has been found empirically (Sinai and 
Souleles, 2005, table 3; Desmet and Rappaport, 2017; Eichholtz et al., 2021) to lead to—persistence in rental price growth.

Our second assumption—a one-time, flexible but irreversible investment—may be less widely applicable, but is particularly apt for 
urban development. As real estate makes up half of the global capital stock, this sector is of prime importance. Today’s construction 
decisions are likely to give rise to urban structures that remain in place for decades. The street map of Manhattan bears witness to 
the persistence of urban structures; e.g. the rectangular grid between Houston Street and 155th Street was laid out in 1811. While 
the assumption of complete irreversibility is technically false (buildings can be demolished), it is, given the high cost of retroactive 
adjustments (Glaeser and Gyourko, 2005), nevertheless a reasonable approximation.

To operationalise assumption (i), we deviate from the classic real-options literature in assuming that the cash flow generated by 
the investment follows a geometric Brownian motion with a drift that is itself a mean-reverting Brownian motion, also known as 
an Ornstein-Uhlenbeck process. This bivariate setup allows for prolonged periods of above- or below-average cash-flow growth, and 
implies that both the cash flow and its growth rate are relevant state variables for the investment decision. Technically, our bivariate 
setup leads to a two-dimensional optimal-stopping problem (e.g. Peskir and Shiryaev, 2006). The classic assumption of a geometric 
Brownian motion (i.e. with constant drift) can be recovered as a limiting case of our new model.

To operationalise assumption (ii), we assume that the investor is faced with a constant-returns-to-scale two-factor Stone-Geary 
production function, which covers the full range of feasible elasticities of substitution between both factors from zero to infinity. 
This article focuses on the range from zero to one, with Leontief and Cobb-Doublas as its two limiting cases, yielding zero and unit 
elasticities, respectively, while Stone-Geary function covers all intermediate cases. Our main finding holds for both elastic production 
functions, i.e. Cobb Douglas and Stone Geary, for which the investment size is flexible, but not for the (inelastic) Leontief case, as 
the fixed size of the investment means there is little gain to be had from postponing investment.

In general economic terms, our counterintuitive result suggests that high-growth assets, which are expensive to realise but derive 
much of their value from anticipated future growth, may be unattractive investment candidates. While the expected growth is 
accounted for in their price, these assets produce cash flows that are, currently, still low. The resulting low dividend yield (or rental 
yield in the case of real estate) initially fails to cover the capital cost associated with the large investment. The capital share for such 
investments is large, as the optimal response under high growth is to build big. The combination of a diminished dividend yield and 
a high capital share means that such investments would generate an initial operating loss, rendering investment suboptimal.

1.1. Comparison with the classic model of irreversible investment

The classic model of irreversible investment under uncertainty (e.g. Dixit and Pindyck, 1994) postulates that, even as postpone-
ment may be attractive for some time, there exists a critical cash-flow level such that investment is triggered as soon as this level is 
breached. As this standard model involves a single state variable (the cash flow), the trigger value can typically be found analytically 
(e.g. Huisman and Kort, 2015, Prop. 1). Instead, we propose a model with two state variables: the level of the cash flow and its 
growth rate. In this more general setting, one may entertain the (possibly naive) hypothesis that investment should be forthcoming 
if the resulting cash-flow stream is sufficiently large and/or rising sufficiently fast. In that case, one would intuitively expect—in 
2

analogy with the classic model—that sufficiently high cash-flow levels should encourage investment. High growth may similarly 
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stimulate investment by raising future cash flows. Moreover, a trade-off would seem to be acceptable: the investor may accept a 
lower cash-flow level given a higher growth rate, and vice versa.

However, our main finding is that, under sufficiently high growth, investment should be postponed irrespective of the cash-flow 
level that could be obtained through the investment. This directly contradicts the main finding of the classic model in the sense that, 
in this region of the state space, a trigger value of the cash flow that would spur investment does not exist. Technically, it is infinite: 
no cash flow, however large, results in the investment being made. In the adjacent part of the state space with more moderate (but 
still positive) growth rates, the trigger value does exist; here, we find that the trigger value increases as the growth rate increases. As 
such, higher growth makes investment less (rather than more) likely.

1.2. Outline

Section 2 solves the deterministic version of model, which we present in general terms using the case of real estate for the purposes 
of illustration. We assume that the ‘excess’ growth rate follows a deterministic Ornstein-Uhlenbeck process; i.e. it is mean-reverting 
to zero in an exponential fashion. This setup allows us to analytically characterise the optimal timing of investment for positive 
excess growth rates. For the Cobb-Douglas case, the decision whether to invest turns out to be independent of the cash-flow level 
that could have been obtained though the investment. Instead, the decision optimally hinges only on the growth rate of the cash 
flow; specifically, investment should be forthcoming if and only if the growth rate is sufficiently low. For the Stone-Geary case, we 
find that while both the cash flow and its growth rate are relevant for the investment decision, they tend to be positively rather than 
negatively correlated at the moment of investment. That is, contrary to the trade-off implied by our initial hypothesis—that a low 
cash-flow level can be compensated by a high growth rate, and vice versa—the two factors are complements: higher growth rates 
necessitate ever higher cash-flow levels to trigger investment. Only for the Leontief production function does the standard result hold 
that investment should be forthcoming if the resulting cash-flow stream is sufficiently high.

While illuminating the drivers behind our main result, the deterministic model has two important drawbacks. First, deviations of 
the growth rate from its long-term average cannot be endogenously realised. To generate an initial deviation, we would have to rely 
on an ‘MIT shock’: a sizeable and unexpected one-time shock to the system that is entirely external to the model in the sense that 
agents are unaware even of the possibility of its arrival (e.g. Boppart et al., 2018). In reality, market participants are well aware of 
the stochasticity of both cash flows and growth rates; this knowledge could alter their behaviour in complicated ways. Second, the 
deterministic model is less general and robust than a full-fledged stochastic version would be.

Section 3 addresses these concerns by postulating stochastic laws of motion for the cash-flow level and its growth rate. Our 
analytic valuation formula for existing assets, which we believe to be new, is not only relevant for real-estate investment decisions 
but is more broadly applicable in financial economics, e.g. to the valuation of (growth) stocks. Stocks for which the dividend-growth 
rate exceeds the time-preference rate cannot be valued by models that assume a static (i.e. non-mean-reverting) growth rate, as the 
resulting present value would be unbounded. Conversely, modelling the growth rate using a mean-reverting process, as in this article, 
implies a bounded asset value even when the growth rate temporarily outstrips the time-preference rate.

Section 3 also provides a closed-form solution for the two-dimensional option-valuation problem with a Cobb-Douglas production 
function. For the Stone-Geary and Leontief cases, we employ two numerical methods, which produce near-identical results that are 
fully in line with the theory and robust under sensitivity checks. For all three production functions, the conclusions of the deter-
ministic model continue to hold up under stochasticity; indeed, our main finding is reinforced, as uncertainty creates an additional 
incentive for postponing investment. For both elastic production functions, the critical level of the growth rate beyond which invest-
ment is suppressed is reduced relative to the deterministic case, thereby making the effect more pronounced. For realistic parameter 
values, we find that positive growth shocks tend to suppress rather than boost new investment.

Finally, Section 4 discusses our results in the broader context of urban growth. While the investor’s actions are efficient in the 
context of a single plot of vacant land, positive agglomeration externalities in cities suggest that even further delays may be societally 
optimal. We conclude by posing an empirical litmus test that can verify or falsify the model’s validity.

1.3. Related literature

Classic real-options models take cash flows to be stochastic processes with constant drifts: see e.g. Titman (1985), Geltner (1989), 
Smith (1984), Quigg (1993), Williams (1993), Grenadier (1996), Merton (1998), Foo Sing (2001) and Peng (2016) for applications 
in real estate. These models have a single state variable (the cash flow), which facilitates a straightforward threshold strategy: invest 
when the cash flow is above a constant trigger level that can be identified analytically by standard real-options methods (e.g. Dixit 
and Pindyck, 1994).

The introduction of persistent growth rates, as in the present article, may go some way to explaining why superstar cities tend to 
have low rent-to-price ratios (Amaral et al., 2021, Hilber and Mense, 2021). Even as the rental income is unchanged, the expectation 
of rent growth is sufficient to boost property prices, thereby lowering rent-to-price ratios. Persistent growth may also explain why 
land on the outskirts of superstar cities is more valuable than would otherwise be the case (i.e. without persistent growth). While it 
is well known in the real-options literature that uncertainty can drive investment delays—consider the Abel-Caballero-Hartman-Oi 
effect (e.g. Bloom et al., 2018)—the rationale for postponing investment in our model is different in that it persists even when growth 
rates evolve entirely deterministically.

In finance, persistent growth in dividends has received some attention, as it could help explain high price-to-earnings ratios of 
3

growth firms. This is because market expectations of continued growth boost equity prices (e.g. Chan et al., 2003; Chen, 2017). That 
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housing can similarly be viewed as an asset that generates ‘dividends’ (i.e. rent) is also well known (e.g. Sinai and Souleles, 2005; 
Fairchild et al., 2015). To the best of our knowledge, however, the problem of determining the net present value of a cash-flow 
stream involving persistent growth has not been solved. Our closed-form solution may thus be applicable to questions such as the 
valuation of (growth) stocks.

Several authors have assumed the scale of the investment to be flexible a priori but fixed a posteriori (e.g. Dixit, 1993, Bertola 
and Caballero, 1994, Abel and Eberly, 1996, Balter et al., 2022). In the context of cities, Arnott and Lewis (1979) and Capozza and 
Helsley (1989) apply a model with growth-rate differentials between cities to show that land close to fast-growing cities commands 
a higher option value and will be developed more densely. Our model is reminiscent of that of Capozza and Li (1994), who allow for 
stochastic growth around a deterministic trend that differs between cities. In fact, these authors suggest modelling persistent growth 
rates, as we do, and conjecture some of our findings, but not the positive relation between the cash-flow level and its growth rate at 
the moment of investment.

From a technical perspective, our work is related to the growing body of literature on optimal stopping in multidimensional 
models, e.g. Rogers (2002), Andersen and Broadie (2004), Bally and Printems (2005) and Compernolle et al. (2021). It also ties in 
directly with Strulovici and Szydlowski’s (2015, p. 1042) call for “a better understanding of the properties of optimal policies and 
value functions with a multidimensional state space” as well as for the construction of explicit solutions. To solve our most general 
model, we apply two numerical methods that yield identical results. First, we use Poisson optional stopping times (POST; Lange 
et al., 2020), a robust method for constructing solutions that finds the value function as an increasing sequence of lower bounds; 
this property persists after discretisation when using standard finite-difference stencils. The theoretical properties of the algorithm 
(monotone and geometric convergence) imply that the discretised problem can be solved reliably. Second, we follow Compernolle 
et al. (2021) in directly discretising the partial differential equation, and impose relevant constraints using the theory of linear 
complementarity problems (LCPs, Cottle et al., 2009). The LCP can then be solved using standard Newton-type methods as in e.g. 
Bazaraa et al. (2013).

2. Deterministic model yielding the main result

This section presents the simplest version of the model that yields our main result, namely that investment is suboptimal when 
growth is high. This model features deterministic state dynamics and can be solved almost entirely in closed form. The main result 
follows from simple algebra, which for transparency is contained in the main text. Our aim here is to highlight the key drivers of the 
main result in general economic terms and in easily verifiable form. The model is not intended to be exclusively applicable to urban 
development; we do, however, rely on a real-estate application for the purposes of illustration.

2.1. Model

Overall setting. There are two factors of production. The first factor has been previously committed and is unalterable (e.g. land). 
The decision maker owns one unit of this first factor, which can be combined with a one-off capital investment in the second factor 
(e.g. construction) to yield production capacity (e.g. a building with usable floorspace). Both the timing of this investment and its 
scale (e.g. square footage) are chosen optimally. Once realised, the amount of production capacity is forever fixed (e.g. buildings are 
immutable and everlasting); neither factor depreciates. Each unit of production capacity produces one unit of a commodity per unit 
of time, which is sold on a perfectly competitive market; this generates a cash flow that can be viewed as dividend (e.g. rent for real 
estate). In sum, we assume that one factor is fixed, while the other has a ‘putty-clay’ capital structure, meaning it is flexible at the 
time of investment but immutable thereafter.

Output-price dynamics. Time is continuous. Each unit of the commodity at time 𝑡 is sold at a market price (e.g. the rental rate per 
unit of floorspace) of 𝑌𝑡 > 0. The growth rate of this market price is 𝜇 +𝑋𝑡, where 𝜇 > 0 is the long-term growth rate, assumed for 
simplicity to be strictly positive,1 while the excess growth rate 𝑋𝑡 is mean-reverting to zero at the rate 𝜃 > 0. For any time 𝑟 ≥ 𝑡, 
these dynamics imply

�̇�𝑡 = −𝜃𝑋𝑡 ⇔ 𝑋𝑟 =𝑋𝑡 e−𝜃(𝑟−𝑡), (1)

�̇�𝑡 = 𝑌𝑡(𝜇 +𝑋𝑡) ⇔ 𝑌𝑟 = 𝑌𝑡 exp
⎡⎢⎢⎣𝜇 (𝑟− 𝑡) +

𝑟

∫
𝑡

𝑋𝑠 d𝑠
⎤⎥⎥⎦ , (2)

where a dot above a variable denotes a time derivative. The model thus features two state variables, {𝑋𝑡} and {𝑌𝑡}, which influence 
the optimal timing and scale of the investment. For 𝑋0 > 0, the exponential growth rate of 𝑌𝑡 exceeds 𝜇 for all 𝑡 ≥ 0, while converging 
to 𝜇 asymptotically. In sum, we assume that the cash flow 𝑌𝑡 and its growth rate 𝜇+𝑋𝑡 are at least partially (and in this case, perfectly) 
predictable, while 𝑋𝑡 is mean reverting. Dynamics (1)–(2) will in Section 3 be generalised to allow for random shocks. The classic 
model of investment can be recovered by taking the limit 𝜃 →∞, in which case 𝑋𝑡 → 0 for all 𝑡 > 0, such that 𝑌𝑡 = 𝑌0 exp(𝜇𝑡) is the 
only state variable.
4

1 The strict positivity of 𝜇 ensures that investment is attractive in the long run.
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Table 1

Elasticities of substitution for production function (3).

𝛼 𝜙 Elasticity Classification
of substitution

Leontief 0 > 0 0 inelastic
Stone Geary (0,1) > 0 (0,1) elastic
Cobb Douglas (0,1) 0 1 elastic

Note: Elasticity of substitution for different values of the parameters 𝛼
and 𝜙 in the production function (3).

Production function. Both factors of production are combined to yield production capacity by means of a constant-returns-to-scale 
(CRS) Stone-Geary production function.2 One unit of the first factor combined with a capital investment 𝐾 in the second factor yields 
the production capacity 𝐹 (𝐾):

𝐹 (𝐾) = (𝐾 − 𝜙)𝛼, 𝐾 ≥ 𝜙, (3)

where 𝛼 ∈ [0, 1) and 𝜙 are parameters. Production function (3) resembles the standard constant-elasticity-of-substitution (CES) pro-
duction function in that it allows for an elasticity of substitution between both factors anywhere in the range [0, ∞) (see Appendix A 
for details).

In this article, we restrict our attention to the case 𝜙 ≥ 0, which implies that the elasticity of substitution between both factors 
of production lies in the range [0, 1] (see also Appendix A). For 𝜙 ≥ 0, Table 1 displays three collectively exhaustive cases: (i) 
Leontief (𝛼 = 0, 𝜙 > 0, zero elasticity), (ii) Stone Geary (𝛼 > 0, 𝜙 > 0, elasticity strictly between zero and one) and (iii) Cobb Douglas 
(𝛼 > 0, 𝜙 = 0, unit elasticity). Parameter 𝛼 is critical in controlling the elasticity: as indicated in Table 1, we refer to Leontief (i.e. 
𝛼 = 0) as the inelastic case, while Stone Geary and Cobb Douglas (for which 𝛼 > 0) are the elastic cases—this distinction will be 
relevant for the main result. Parameter 𝜙 ≥ 0 can be interpreted as (i) the fixed cost of construction, incurred irrespective of the 
amount of floorspace created, or (ii) the present value of the agricultural use of vacant land; the latter interpretation links our 
approach to seminal papers in the field of urban economics (Lucas and Rossi-Hansberg, 2002 and Ahlfeldt et al., 2015).

2.2. Valuation of existing production capacity

Value of a unit of production capacity. Let 𝛽 > 0 be the investor’s rate of time preference; alternatively, 𝛽 can be interpreted as the 
(flow) cost of capital. To achieve a bounded value of existing production capacity, the long-term growth rate of 𝑌𝑡 should be strictly 
exceeded by the time-preference rate:

𝜇 < 𝛽, (4)

as assumed throughout. The present value of one unit of production capacity (e.g. one unit of floorspace) at time 𝑡 then equals a 
discounted integral (over time) involving all future cash flows:

𝐵𝑡 ∶=

∞

∫
𝑡

e−𝛽(𝑟−𝑡) 𝑌𝑟 d𝑟 = 𝑌𝑡

∞

∫
𝑡

exp
⎡⎢⎢⎣−(𝛽 − 𝜇)(𝑟− 𝑡) +

𝑟

∫
𝑡

𝑋𝑠 d𝑠
⎤⎥⎥⎦ d𝑟, (5)

where the equality follows by equation (2). In the point 𝑋𝑡 = 0, we have 𝐵𝑡 = 𝑌𝑡∕(𝛽 − 𝜇). Naturally, 𝑌𝑡∕(𝛽 − 𝜇) would also be the net 
present value if the growth rate were assumed constant, as in e.g. Gordon and Shapiro’s (1956) classic dividend-discount model. In 
the point 𝑋𝑡 = 0, therefore, equation (5) and the ‘Gordon-growth model’ coincide. For positive growth (i.e. 𝑋𝑡 > 0), our valuation 
formula (5) suggests a higher value than the Gordon-growth formula.

Price-dividend ratio and dividend yield. It is convenient to write 𝐵𝑡 = 𝑌𝑡 𝑏𝑡, where 𝑏𝑡 ∶= 𝐵𝑡∕𝑌𝑡 is the price-dividend ratio (or 
the price-to-rent ratio for real estate), which plays an important role. Its inverse, 𝑏−1𝑡 = 𝑌𝑡∕𝐵𝑡, can be viewed as the dividend yield; 
alternatively, it can be interpreted as the rental yield for real estate. Using equation (5), the price-dividend ratio 𝑏𝑡 equals

𝑏𝑡 ∶=
𝐵𝑡

𝑌𝑡
=

∞

∫
𝑡

exp
⎡⎢⎢⎣−(𝛽 − 𝜇)(𝑟− 𝑡) +

𝑟

∫
𝑡

𝑋𝑠 d𝑠
⎤⎥⎥⎦ d𝑟, (6)

=

∞

∫
0

exp
[
−(𝛽 − 𝜇)𝑠+𝑋𝑡

1 − e−𝜃𝑠
𝜃

]
d𝑠 > 0, 𝑋𝑡 ∈ℝ, (7)

2 A standard Stone-Geary two-factor production function reads  (,) = 1−𝛼 (− 𝜙)𝛼 , which exhibits increasing returns to scale. The version with constant 
returns to scale reads  (,) = 1−𝛼 (− 𝜙)𝛼 . Hence 𝐹 (𝐾) ∶=  (1,𝐾) = (𝐾 − 𝜙)𝛼 where 𝐾 ∶=∕ is the ratio between both factors of production. We consider 
5

the case where the investor owns one unit of the factor , thus  = 1.
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where the second line follows by equation (1) for 𝑋𝑠. Equation (7) implies that 𝑏𝑡 depends on time only implicitly, via 𝑋𝑡. Hence, 
we write 𝑏𝑡 = 𝑏(𝑋𝑡) for the function 𝑏(⋅) defined as

𝑏(𝑋) ∶=

∞

∫
0

exp
[
−(𝛽 − 𝜇)𝑠+𝑋

1 − e−𝜃𝑠
𝜃

]
d𝑠 > 0, 𝑋 ∈ℝ. (8)

This function 𝑋 ↦ 𝑏(𝑋) is positive, convex and strictly increasing, while diverging as 𝑋 →∞. The inverse of 𝑏(⋅) is thus well defined; 
hence, 𝑋𝑡 implies 𝑏𝑡 = 𝑏(𝑋𝑡) and vice versa. When convenient, therefore, 𝑏𝑡 can be used as a state variable instead of 𝑋𝑡. Importantly 
for the main result, the dividend yield 𝑏(𝑋)−1 is decreasing in 𝑋. This is because high dividend growth reduces the ratio of current 
dividends over their present value (i.e. the current dividend yield).

The dynamics of 𝑏𝑡 are derived most easily by focusing on equation (6) in terms of 𝑡. Applying the Leibniz integral rule to take 
the time derivative of 𝑏𝑡 yields

�̇�𝑡∕𝑏𝑡 = 𝛽 − 𝑏−1
𝑡

− 𝜇 − 𝑋𝑡. (9)

For above-average dividend growth (i.e. 𝑋𝑡 > 0), it follows3 that the price-dividend ratio 𝑏𝑡 is decreasing over time (i.e. �̇�𝑡 < 0); i.e. 
𝑏𝑡 is gradually reduced to its long-term average value of (𝛽 − 𝜇)−1.

Relation to the classic model. The classic model of investment can be recovered by taking 𝜃 →∞, in which case 𝑋𝑡 → 0 for all 
𝑡 > 0. The cash flow 𝑌𝑡 then grows at the constant exponential rate 𝜇. Equation (7) shows that the price-dividend ratio is constant 
at 𝑏𝑡 = (𝛽 − 𝜇)−1 for all 𝑡. Equivalently, the classic model is recovered by taking 𝑡 →∞, in which case, similarly, 𝑏𝑡 → (𝛽 − 𝜇)−1. The 
classic model does not allow (i) the price-dividend ratio 𝑏𝑡 to vary over time, or (ii) the growth rate 𝜇 to exceed the time-preference 
rate 𝛽 (as the present value of the dividend flow would be unbounded). In contrast, the new model allows the price-dividend ratio 
𝑏𝑡 to vary over time, while the short-term growth rate 𝜇 +𝑋𝑡 may surpass the time-preference rate, as long as the long-term growth 
rate 𝜇 is still strictly dominated by 𝛽.

2.3. Optimal level of investment

Optimal level of investment. To determine the optimal level of investment, suppose that the investor is obliged to invest at time 
𝑡 (i.e. commit a strictly positive amount of capital). We denote this ‘conditionally optimal’ investment by 𝐾𝑡, which maximises the 
present value of the future revenues. The present value consists in the amount of production capacity times its net present value per 
unit, 𝐹 (𝐾)𝐵𝑡, minus the cost of the investment, 𝐾 :

𝐾𝑡 ∶= argmax
𝐾≥𝜙

[
𝐹 (𝐾)𝐵𝑡 −𝐾

]
= argmax

𝐾≥𝜙
[
(𝐾 − 𝜙)𝛼𝑌𝑡 𝑏𝑡 −𝐾

]
, (10)

where we have used production function (3) and 𝐵𝑡 = 𝑌𝑡𝑏𝑡. The first-order condition associated with the interior solution reads 
𝛼(𝐾𝑡 − 𝜙)𝛼−1𝑌𝑡𝑏𝑡 = 1. This condition can be solved to yield the optimal investment 𝐾𝑡 and associated (optimal) production capacity 
𝑄𝑡 = 𝐹 (𝐾𝑡):

𝐾𝑡 = 𝜙+
(
𝛼𝑌𝑡𝑏𝑡

)1∕(1−𝛼)
> 0, 𝑄𝑡 ∶= 𝐹 (𝐾𝑡) =

(
𝛼𝑌𝑡𝑏𝑡

)𝛼∕(1−𝛼)
> 0. (11)

This interior solution remains valid as we approach the boundary case 𝛼 = 0, in which case 𝐾𝑡 = 𝜙 and 𝑄𝑡 = 1 (as 𝛼𝛼 = 00 = 1). 
Conveniently, therefore, equation (11) holds for the entire range 𝛼 ∈ [0, 1).

Capital share. The capital share plays a key role in determining the optimal timing of investment. The capital share is the ratio of 
investment, 𝐾𝑡, over the present value of the acquired production capacity, which is the quantity times the net present value per 
unit, i.e. 𝑄𝑡𝐵𝑡. Using 𝐵𝑡 = 𝑌𝑡𝑏𝑡 and equation (11) for 𝐾𝑡 and 𝑄𝑡, the capital share reads

capital share ∶=
𝐾𝑡

𝑄𝑡𝐵𝑡

=
⎧⎪⎨⎪⎩
𝜙∕ (𝑌𝑡 𝑏𝑡), Leontief: 𝛼 = 0, 𝜙 > 0,

𝛼 + 𝛼 𝜙
(
𝛼 𝑌𝑡 𝑏𝑡

)−1∕(1−𝛼)
> 𝛼, Stone Geary: 𝛼 ∈ (0,1), 𝜙 > 0,

𝛼, Cobb Douglas: 𝛼 ∈ (0,1), 𝜙 = 0.

(12)

In the inelastic case (i.e. 𝛼 = 0), the capital share approaches zero asymptotically as 𝑌𝑡, 𝑏𝑡 → ∞. This is because the investment 
remains fixed at 𝜙, while the present value 𝑌𝑡𝑏𝑡 grows without bound. At the other end of the spectrum, it is a textbook result that 
the capital share for the Cobb-Douglas case is constant at 𝛼 > 0; this is due to the elasticity of substitution between both factors of 
production being unity. In the Stone-Geary case, the capital share exceeds 𝛼 (due to the additional investment 𝜙 > 0), while declining 
to 𝛼 in the limit. In both elastic cases (i.e. 𝛼 > 0), therefore, the capital share does not vanish asymptotically but remains strictly 
positive at 𝛼 > 0. This distinction—i.e. whether the capital share vanishes asymptotically—is critical to the main result.

3 This follows from 1∕𝑏𝑡 > 𝛽 − 𝜇 −𝑋𝑡 for 𝑋𝑡 > 0. For 𝑋𝑡 ≥ 𝛽 − 𝜇, the inequality is trivial as the right-hand side is then weakly negative. For 0 < 𝑋𝑡 < 𝛽 − 𝜇, the 
6

inequality follows from 𝑏𝑡 < 1∕(𝛽 − 𝜇 −𝑋𝑡) from equation (6).
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Optimal asset value. Let 𝐴𝑡 denote the net present value (or ‘asset value’) at time 𝑡, still assuming that investment at time 𝑡 is 
mandatory. This conditionally optimal asset value is the present value of the production capacity, 𝑄𝑡𝐵𝑡, minus the investment cost, 
𝐾𝑡, i.e.

𝐴𝑡 ∶= 𝑄𝑡𝐵𝑡 −𝐾𝑡 = (1 − 𝛼)
(𝛼 𝑌𝑡 𝑏𝑡)1∕(1−𝛼)

𝛼
−𝜙, (13)

where the equality follows from 𝐵𝑡 = 𝑌𝑡 𝑏𝑡 and the expressions for 𝐾𝑡 and 𝑄𝑡 in equation (11). For 𝛼 = 0, equation (13) simplifies to 
𝐴𝑡 = 𝑌𝑡 𝑏𝑡 − 𝜙 (as before, this follows from 𝛼𝛼 = 00 = 1). Importantly, equation (13) yields an expression of the value of investment, 
𝐴𝑡, in terms of 𝑏𝑡 = 𝑏(𝑋𝑡) and 𝑌𝑡, or, equivalently, in terms of our state variables, 𝑋𝑡 and 𝑌𝑡. While 𝐴𝑡 > 0 for 𝜙 = 0, 𝐴𝑡 may be 
negative if 𝜙 > 0; this is attributable to the mandatory nature of the investment.

2.4. Optimal timing of investment: two necessary conditions

The option value of the committed factor (e.g. land) is obtained by optimising both the level and timing of investment. As the 
investment decision is irreversible, while its timing is discretionary, the optimised present value at time zero equals

option value: 𝑉0 ∶= sup
𝑡≥0

[ e−𝛽𝑡 𝐴𝑡 ] > 0, (14)

where the subscript indicates that 𝑉0 is conditional on the starting point (𝑋0, 𝑌0), the discounting is evident from the multiplicative 
factor e−𝛽𝑡 and the supremum is due to optimisation of the investment time. While the model considered here is entirely deterministic, 
𝑉0 can still be viewed as an option value in the sense that investment is optional and never mandatory. In the case of real estate, 𝑉0
would be the option value of a single unit of vacant land.

The strict positivity of 𝑉0 in equation (14) derives from the fact that, asymptotically, 𝐴𝑡 grows without bound; i.e. a strictly posi-
tive value can be obtained by postponing investment for a sufficiently long period of time. Indeed, 𝐴𝑡 ∝ 𝑌

1∕(1−𝛼)
𝑡 from equation (13), 

such that the asymptotic growth rate of 𝐴𝑡 equals 𝜇∕(1 − 𝛼) > 0. To ensure 𝑉0 <∞, therefore, we require

boundedness of 𝑉0 ∶
𝜇

1 − 𝛼
< 𝛽. (15)

If optimisation (14) allows an interior solution for some 𝑡 > 0, then the associated first-order condition reads �̇�𝑡 = 𝛽𝐴𝑡. If the boundary 
solution 𝑡 = 0 applies, however, we may have strict inequality, i.e. �̇�𝑡 < 𝛽𝐴𝑡. This boundary case is relevant when 𝑡 ↦ e−𝛽𝑡𝐴𝑡 is both 
(i) positive at 𝑡 = 0 and (ii) strictly decreasing for all 𝑡 > 0, which jointly imply that immediate investment is optimal. In general, for 
investment to be optimal at some time 𝑡 ≥ 0, two necessary conditions must hold:

zero-order condition: 𝐴𝑡 ≥ 0, (16)

first-order condition:
d
d𝑡

[ e−𝛽𝑡 𝐴𝑡 ] ≤ 0 ⇔ �̇�𝑡 ≤ 𝛽𝐴𝑡. (17)

The zero-order condition requires the asset value at the time of investment to be weakly positive; this is a necessary condition as 
the value zero can be obtained by foregoing investment altogether. The first-order condition (17) posits that 𝑡 ↦ e−𝛽𝑡𝐴𝑡 should be 
weakly decreasing at the time of investment; if this quantity were strictly increasing, a better discounted value could be obtained by 
postponing investment. Due to the weak inequality, first-order condition (17) allows for both interior and boundary solutions.

2.5. Why investment is suboptimal under high growth

Here we show that, in the case of an elastic production function (i.e. 𝛼 > 0), the first-order condition (17) rules out investment 
when growth is high. To explain this surprising result, we demonstrate that the first-order condition (17) can be fruitfully interpreted 
in terms of the capital share (12).

First, we compute �̇�𝑡 by differentiating equation (13) and using the chain rule to account for the dependence on 𝑌𝑡 and 𝑏𝑡, 
yielding

�̇�𝑡 =
d𝐴𝑡

d𝑌𝑡
�̇�𝑡 +

d𝐴𝑡

d𝑏𝑡
�̇�𝑡 =

𝐴𝑡 + 𝜙

1 − 𝛼

(
�̇�𝑡

𝑌𝑡
+

�̇�𝑡

𝑏𝑡

)
=

𝐴𝑡 +𝜙

1 − 𝛼
(𝛽 − 𝑏−1

𝑡
), (18)

where we have used equations (2) and (9) for �̇�𝑡 and �̇�𝑡, respectively. Substituting this expression for �̇�𝑡 into the first-order condition 
�̇�𝑡 ≤ 𝛽𝐴𝑡, we obtain

𝐴𝑡 +𝜙

1 − 𝛼
(𝛽 − 𝑏−1

𝑡
) ≤ 𝛽𝐴𝑡 ⇔ 𝛽 𝐾𝑡

⏟⏞⏟⏞⏟

flow cost of
capital investment

≤ 𝑄𝑡 𝑌𝑡
⏟⏞⏞⏟⏞⏞⏟

cash flow
after investment

, (19)

where the reformulation on the right uses (𝐴𝑡 + 𝜙)∕(1 − 𝛼) = 𝑄𝑡𝐵𝑡, 𝑄𝑡𝐵𝑡 − 𝐴𝑡 = 𝐾𝑡 and 𝐵𝑡∕𝑏𝑡 = 𝑌𝑡. The reformulation posits that 
7

the flow cost of investment, 𝛽𝐾𝑡, should be covered by the cash flow generated immediately after investment, 𝑄𝑡𝑌𝑡. This condition 
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prohibits the investor from incurring a negative cash flow after investment, where the term 𝛽𝐾𝑡 accounts for the time value (or 
‘amortisation’) of the investment 𝐾𝑡.

Further economic insight is obtained by dividing both sides of condition (19) by the present value of the production capacity, 
𝑄𝑡𝐵𝑡 =𝑄𝑡𝑌𝑡𝑏𝑡, which yields the following equivalent, first-order condition:

𝛽
⏟⏟⏟

flow cost of capital

×
𝐾𝑡

𝑄𝑡 𝐵𝑡
⏟⏞⏞⏞⏟⏞⏞⏞⏟
capital share

≤ 1
𝑏𝑡

⏟⏟⏟
dividend yield

. (20)

Condition (20) postulates that, at the time of investment, the dividend yield should surpass the flow cost associated with the capital 
share. This condition highlights why high-growth assets may in fact be unattractive investment candidates: while they enjoy lofty 
valuations, they produce relatively meagre cash flows—and thus have low current dividend yields. Indeed, the right-hand side of 
condition (20) is decreasing (to zero) in 𝑋𝑡, as higher growth rates suppress the dividend yield. However, for the two elastic cases 
(i.e. 𝛼 > 0), the left-hand side remains strictly positive because the capital share (12) is bounded below by 𝛼 > 0. Given that the 
left-hand side remains strictly positive, while the right-hand side is decreasing to zero, first-order condition (20) cannot hold for 
sufficiently high 𝑋𝑡. Hence we arrive at the conclusion that, for 𝛼 > 0, investment is suboptimal for sufficiently high growth.

The economic interpretation is that high-growth assets are exceedingly expensive (as their price reflects the expected dividend 
growth), while the current (low) dividend yield fails to cover the flow cost associated with the capital share. Critically, the capital 
share does not shrink to zero in the case of an elastic production function, because under high growth the optimal response is to 
build big; i.e. the capital investment, 𝐾𝑡, is proportional to the value of the associated production capacity, 𝑄𝑡𝐵𝑡, with proportionality 
constant 𝛼 > 0. Under high growth, the combination of (i) a diminished dividend yield and (ii) a constant capital share means that 
investment would generate an initial operating loss after accounting for the large capital cost; hence, investment is ruled out by the 
first-order condition (17) or, equivalently, (20). By waiting for the expected dividend growth to materialise, a larger investment can 
instead be made at a later time, which will instantly yield positive operating cash flows.

To investigate this in more detail, we substitute the capital share (12) into condition (20) to obtain three alternative versions of 
the first-order condition:

𝛽 𝜙 ≤ 𝑌𝑡, for Leontief, i.e. 𝛼 = 0, 𝜙 > 0, (21)(
1 + 𝜙

(
𝛼 𝑌𝑡 𝑏𝑡

)−1∕(1−𝛼))
𝛼 𝛽 ≤ 𝑏−1

𝑡
, for Stone Geary, i.e. 𝛼 ∈ (0,1), 𝜙 > 0, (22)

𝛼 𝛽 ≤ 𝑏−1
𝑡
, for Cobb Douglas, i.e. 𝛼 ∈ (0,1), 𝜙 = 0. (23)

Condition (21) for the Leontief case requires the cash flow, 𝑌𝑡, to exceed the flow cost of investment, 𝛽𝜙. Hence, condition (21) holds 
for sufficiently high values of 𝑌𝑡; this is consistent with our initial hypothesis that investment should be forthcoming when the cash 
flow 𝑌𝑡 is sufficiently high.

Condition (23) for the Cobb-Douglas case, at the other extreme, posits that the dividend yield, 1∕𝑏𝑡, should exceed the flow cost, 
𝛼𝛽, associated with the (constant) capital share, 𝛼. However, the required inequality 𝛼𝛽 ≤ 1∕𝑏𝑡 cannot hold for sufficiently high 
𝑋𝑡, because the right-hand side is decreasing to zero, while the left-hand side is constant and strictly positive. For sufficiently high 
𝑋𝑡, investment is suboptimal regardless of 𝑌𝑡; this contradicts our hypothesis that a sufficiently high cash flow 𝑌𝑡 should trigger 
investment.

Finally, the counterintuitive conclusion that investment is suboptimal when growth is high persists in the intermediate case (22), 
because, as with the Cobb-Douglas production function, the capital share is bounded below by 𝛼. In fact, the Stone-Geary condi-
tion (22) is even more stringent than the Cobb-Douglas condition (23), because the capital share increases due to the additional 
investment 𝜙 > 0, further raising the hurdle for investment. Again, condition (22) cannot hold if the dividend yield 𝑏−1𝑡 falls below 
𝛼𝛽, thereby rendering investment suboptimal. This simple rule is entirely agnostic about 𝑌𝑡 and thus contradicts our hypothesis 
that a sufficiently high cash flow 𝑌𝑡 should trigger investment. Rather, for large 𝑌𝑡, the Stone-Geary condition (22) approaches the 
Cobb-Douglas condition (23), where 𝑋𝑡 is the only relevant variable; moreover, the necessary condition for investment is satisfied 
only for sufficiently low growth.

2.6. Sufficiency of the first-order condition for positive excess growth

We have seen that the first-order condition (20) is highly influential in restricting the region of the state space where investment 
could be optimal. Here we demonstrate that, for positive excess growth rates 𝑋𝑡 > 0, this condition is not only necessary but also 
sufficient; hence, it fully characterises optimality.

Proposition 1 (First-order condition characterises optimality for 𝑋𝑡 > 0). Let condition (15) hold. For positive excess growth rates 𝑋𝑡 > 0, 
the first-order condition (17), or equivalently (20), is both necessary and sufficient: i.e. investment is optimal if and only if the first-order 
condition holds.

We prove this result in Appendix B in three steps. First, we demonstrate that for 𝑋𝑡 > 0, the first-order condition (17) implies the 
zero-order condition (16). Second, we establish uniqueness: there exists at most one (unique) interior solution to the optimisation 
8

problem (14). Third, we establish the existence of at least one solution to the first-order condition (17), interior or otherwise, by 
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Fig. 1. Optimal investment policy with deterministic dynamics (1)–(2).

showing that this condition is asymptotically satisfied. Taken together, these facts imply that, for 𝑋𝑡 > 0, the function 𝑡 ↦ e−𝛽𝑡𝐴𝑡 has 
a unique maximum, while this function is strictly increasing (decreasing) at any time strictly prior (posterior) to the unique moment 
𝑡 ∈ℝ that achieves this maximum. If this unique moment lies in the past, immediate investment is optimal.

The characterisation of the optimal investment policy for 𝑋𝑡 < 0 is more involved because the interior solution to the first-order 
condition is no longer unique. The complications are that (i) there may be a local minimum as well as a local maximum, and (ii) the 
local maximum is not necessarily globally optimal, as it may be dominated by the boundary solution 𝑡 = 0. The optimal policy is to 
invest immediately if the local maximum lies in the past, in which case any further delay is detrimental, while if the local maximum 
lies in the future, the decision maker should weigh up the value of investing now against the discounted value of waiting until the 
local maximum; details are available on request.

2.7. Visualising the optimal investment policy

Here we show how the optimal investment decision depends on the coordinate (𝑋, 𝑌 ) in the state space ℝ ×ℝ>0; hence, we write 
(𝑋𝑡, 𝑌𝑡) = (𝑋, 𝑌 ) (i.e. we drop the subscript 𝑡). This simplification is permitted as the state space is now partitioned into (i) a region 
where it is optimal to wait and (ii) a region where it is optimal to invest—i.e. the investment decision depends only on the spatial 
coordinate. The quantities 𝐴𝑡, 𝐵𝑡, 𝐾𝑡 and 𝑄𝑡 are now viewed as depending on the spatial coordinate (𝑋𝑡, 𝑌𝑡) = (𝑋, 𝑌 ). This can be 
achieved by replacing, in each expression, 𝑏𝑡 by 𝑏(𝑋) and 𝑌𝑡 by 𝑌 .

For the numerical illustration below, we use a set of benchmark parameter values, i.e. 𝛽 = 0.06, 𝜇 = 0.01, 𝜃 = 0.15, measured on 
an annual time scale, while 𝛼 = 0.70 for both elastic cases. These parameter values, used throughout unless stated otherwise, are 
roughly calibrated to be relevant for urban development.4 We normalise 𝜙 to unity for the Leontief and Stone-Geary cases without 
loss of generality; see Davis et al. (2021) for a similar argument.5

Our benchmark parameter values imply that assumptions (4) and (15) are satisfied, while the first-order condition (22) for the 
Cobb-Douglas case holds with equality at 𝑋 =𝑋† ≈ 3.45%, where 𝑋† > 0 is the unique solution to

𝛼 𝛽 = 1∕𝑏(𝑋†). (24)

A powerful corollary of Proposition 1 is that, in the Cobb-Douglas case, 𝑋 ≤ 𝑋† is both necessary and sufficient for investment. 
Hence the optimal investment region is the half-space to the left of the vertical line 𝑋 =𝑋†; i.e. investment is optimal for sufficiently 
low growth.

Fig. 1 shows the optimal investment policy in the state space for the Leontief (panel A) and Stone-Geary (panel B) production 
functions. Both panels contain the optimal investment region (shaded grey) and a solid curve that shows where the first-order 
condition (17) or (20) holds with equality (i.e. �̇�𝑡 = 𝛽𝐴𝑡 on the solid curve). Above this solid curve, the first-order condition (17) is 

4 The time-preference rate 𝛽 = 0.06 is motivated by the real cost of capital for real estate in Jordà et al. (2019, Table III). The long-run drift 𝜇 = 0.01 is based on 
the average growth in land productivity reported in Davis et al. (2014, p. 732), while 𝜃 = 0.15 implies an annual autocorrelation of 1 − 0.15 = 0.85, consistent with 
the observed autocorrelation of population growth in US metropolitan areas (Campbell et al., 2009, table 3 and Desmet and Rappaport, 2017). Production parameter 
𝛼 = 0.70 falls in the middle of the range 0.60–0.80 reported in the literature (e.g. Davis et al., 2014).

5 Increasing the fixed cost 𝜙 while holding constant the excess growth rate 𝑋 simply increases (by some multiplicative constant) the rental price per unit of 
9

floorspace 𝑌 for which investment becomes optimal.
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satisfied. We see that the solid curve exactly demarcates the edge of the grey investment region for 𝑋 > 0 in both panels, providing 
a visual illustration of Proposition 1; i.e. the first-order condition is both necessary and sufficient. For 𝑋 < 0, in contrast, the panels 
reveal that the first-order condition �̇�𝑡 ≤ 𝛽𝐴𝑡 is necessary but insufficient, as the grey investment region is no longer demarcated by 
the solid curve; rather, there is a white ‘gap’ between the investment region and the curve. Within this gap, investment is suboptimal 
even as the first-order condition is satisfied; while 𝑡 ↦ e−𝛽𝑡𝐴𝑡 is locally weakly decreasing, waiting is nevertheless optimal because 
the global optimum still lies ahead.

In panel A, for the Leontief production function, investment for 𝑋 > 0 is optimal if and only if 𝑌 exceeds the flow cost of capital, 
𝛽𝜙. For negative growth rates 𝑋 < 0, the critical level of 𝑌 that triggers investment varies only weakly with 𝑋. Panel A is consistent 
with our hypothesis that investment should be optimal if the cash flow 𝑌 is sufficiently high. Moreover, the correlation between 𝑋
and 𝑌 at the moment of investment is zero or marginally negative; i.e. a trade-off between them is deemed acceptable.

In panel B, investment is never optimal for any 𝑋 > 𝑋† = ∼3.45%, irrespective of the cash-flow level 𝑌 . The grey investment 
region lies entirely to the left of the vertical line 𝑋 =𝑋†. The investment region for Stone Geary is a subset of that for Cobb Douglas, 
because the former case requires an additional capital investment 𝜙 > 0, which increases the hurdle for investment. This hurdle 
is negligible for large 𝑌 , however, such that the investment region approaches the vertical line 𝑋 = 𝑋† in this limit, mimicking 
the Cobb-Douglas case. What differentiates both elastic cases from the standard Leontief case, however, is that our hypothesis that 
investment should be forthcoming if 𝑌 is sufficiently high does not hold. Indeed, panel B with 𝑋 >𝑋† reveals no trigger value of 𝑌 , 
however large, that would spur investment. Instead, for sufficiently large 𝑌 , investment is optimal if and only if 𝑋 ≤𝑋†; i.e. only 
sufficiently low growth triggers investment.

Finally, both panels also contain two sample trajectories {(𝑋𝑡, 𝑌𝑡)}𝑡∈ℝ through the state space, where either (i) 𝑋𝑡 > 0 for all 𝑡 or 
(ii) 𝑋𝑡 < 0 for all 𝑡. For 𝑋𝑡 > 0, both panels illustrate that the sample trajectory intersects the solid curve exactly once, at which point 
𝑡 ↦ e−𝛽𝑡𝐴𝑡 achieves its global maximum. For 𝑋𝑡 < 0, in contrast, trajectories {(𝑋𝑡, 𝑌𝑡)}𝑡∈ℝ through the state space are U-shaped, with 
a minimum on the vertical line 𝑋 = −𝜇. As illustrated in Fig. 1, the trajectory may intersect the bold curve twice, corresponding to 
two stationary points. While downcrossings of the solid curve (which represent local minima) are ruled out as optimal investment 
times, upcrossings (which represent local maxima) in panel B are confined to the upward-sloping part of the solid curve, implying 
that higher growth rates necessitate higher cash-flow levels to trigger investment.

We conclude that, for the Stone-Geary production function, state variables 𝑋 and 𝑌 tend to be positively correlated at the moment 
of investment, acting as complements for investment; this prediction warrants empirical testing in view of the widespread belief that 
(i) investment decisions depend mostly or exclusively on 𝑌 , or that (ii) as preconditions for investment, 𝑋 and 𝑌 can be substituted 
for each other.

3. Formulation and solution of the model with stochasticity

This section presents and solves the full-fledged version of the model, i.e. with stochastic state dynamics. The deterministic 
model has the drawback that the system is forced to respond to an ‘MIT shock’ that agents are unaware could occur. In the real 
world, market participants are well aware of the possibility of shocks, and this could affect their behaviour. Introducing stochasticity 
adds an element of realism and enhances the generality and robustness of the proposed model. As we shall see, our main findings 
from Fig. 1 remain valid in the stochastic setting. In fact, as Fig. 4 illustrates, our main finding is further reinforced as uncertainty 
creates an additional incentive for postponing investment. As this section is necessarily more technically advanced, readers primarily 
interested in the main findings are encouraged to skip directly to the discussion of Fig. 4 in Section 3.6.

3.1. Model

The model setup is the same as in Section 2.1, except that equations (1) and (2) are generalised to allow for stochastic shocks. 
In analogy with equation (1), the excess growth rate {𝑋𝑡} follows a mean-reverting Brownian motion (i.e. an Ornstein-Uhlenbeck 
process) with mean-reversion parameter 𝜃 > 0 and stochasticity driven by 𝜎𝑋 ≥ 0. In analogy with equation (2), the cash-flow process 
{𝑌𝑡} is subject to a geometric drift 𝜇 +𝑋𝑡 with 𝜇 > 0 and geometric shocks with standard deviation 𝜎𝑌 ≥ 0:

d𝑋𝑡 = 𝜃
(
−𝑋𝑡 d𝑡 + 𝜎𝑋 d𝑊 𝑋

𝑡

)
, (25)

d log𝑌𝑡 =
(
𝜇 +𝑋𝑡

)
d𝑡 + 𝜎𝑌 d𝑊 𝑌

𝑡
. (26)

Here d𝑊 𝑋
𝑡 and d𝑊 𝑌

𝑡 are increments of standard Wiener processes, with E[d𝑊𝑋
𝑡 d𝑊 𝑌

𝑡 ] = 𝜌 d𝑡 for a correlation parameter 𝜌 ∈ (−1, 1). 
For some results we require 𝜌 ∈ [0, 1), which has the advantage that upward shocks to either 𝑋𝑡 or 𝑌𝑡 can be unambiguously classed 
as good news.6 Lemma 1 in Appendix C demonstrates that, for 𝑡 > 0, the distribution of (𝑋𝑡, log𝑌𝑡) conditional on (𝑋0, log𝑌0) is 
bivariate normal; it also gives the associated mean and covariance matrix. As is standard, the infinitesimal generator corresponding 
to process (25)–(26) is

L ∶= −𝜃𝑋
d
d𝑋

+
𝜎2
𝑋

2
𝜃2

d2

d𝑋2 +

(
𝜇 +𝑋 +

𝜎2
𝑌

2

)
𝑌

d
d𝑌

+
𝜎2
𝑌

2
𝑌 2 d2

d𝑌 2 + 𝜃𝜌𝜎𝑋𝜎𝑌 𝑌
d2

d𝑋d𝑌
. (27)
10

6 When allowing for 𝜌 < 0, an upward shock to either state variable could actually reduce (rather than increase) the present value of future cash flows.
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Formally, L𝑓 (𝑋0, 𝑌0) ∶= lim𝑡↓0 E0[{𝑓 (𝑋𝑡, 𝑌𝑡) − 𝑓 (𝑋0, 𝑌0)}∕𝑡] for an appropriate test function 𝑓 ∶ℝ ×ℝ>0 →ℝ, such that L captures 
the expected change of 𝑓 (𝑋0, 𝑌0) during a short time interval d𝑡.

The stochastic laws of motion (25)–(26) may be contrasted with the classic model of investment, which takes log𝑌𝑡 to be a 
Brownian motion with constant drift. Conveniently, as Lemma 1 in Appendix C shows, this classic model can be recovered as a 
limiting case of model (26) by taking 𝜃 →∞:

d log 𝑌𝑡 = 𝜇 d𝑡 + 𝜎 d𝑊𝑡, (28)

where d𝑊𝑡 is the increment of a standard Wiener process and where

𝜎2 ∶= 𝜎2
𝑋
+ 𝜎2

𝑌
+ 2𝜎𝑋𝑌 , 𝜎𝑋𝑌 ∶= 𝜌𝜎𝑋𝜎𝑌 . (29)

3.2. Valuation of existing production capacity

This section computes the present value of a unit of production capacity under the stochastic dynamics (25)–(26), thus gener-
alising the result in Section 2.2. To obtain a bounded value of existing technologies, both the new model (25)–(26) and the classic 
model (28) require a further parameter restriction. In both cases, log𝑌𝑡 is normally distributed, where the mean and variance are 
asymptomatically linear in 𝑡, scaling as 𝜇𝑡 and 𝜎2𝑡, respectively. By the expectation of a log-normally distributed random variable, 
the discounted cash flow e−𝛽𝑡𝔼[𝑌𝑡] is of order e−(𝛽−𝜇−𝜎2∕2)𝑡 for large 𝑡. For this discounted cash flow to be integrable over time, we 
thus require

𝛽0 ∶= 𝛽 − 𝜇 − 𝜎2∕2 > 0. (30)

Condition (30) generalises restriction (4), which is a special case for which 𝜎𝑋 = 𝜎𝑌 = 𝜎 = 0.
Next, Proposition 2 computes the present value of one unit of production capacity conditional on the current state variables 𝑋0

and 𝑌0. The resulting analytic valuation formula (31)—which is, to the best of our knowledge, new—could be applied to a broader 
set of questions, such as the valuation of (growth) stocks.

Proposition 2 (Value of unit of production capacity). Let condition (30) hold. The present value of a single unit of production capacity at 
time 0 conditional on the state variables (𝑋0, 𝑌0), denoted 𝐵(𝑋0, 𝑌0), equals

𝐵(𝑋0, 𝑌0) ∶=

∞

∫
0

e−𝛽 𝑡 E0[𝑌𝑡] d𝑡 = 𝑌0 𝑏(𝑋0), ∀(𝑋0, 𝑌0) ∈ℝ ×ℝ>0, (31)

where E0 is the expectation conditional on (𝑋0, 𝑌0) and where the function 𝑏(𝑋) is defined as

𝑏(𝑋) ∶=

∞

∫
0

exp

[
−𝛽0 𝑡+

(
𝑋 − 𝜎2

𝑋
− 𝜎𝑋𝑌

) 1 − e−𝜃𝑡
𝜃

+
𝜎2
𝑋

2
1 − e−2𝜃𝑡

2𝜃

]
d𝑡, 𝑋 ∈ℝ. (32)

The function 𝑏 (𝑋) is positive, increasing and convex, while diverging to infinity as 𝑋 →∞. Moreover, 𝐵(𝑋, 𝑌 ) satisfies Bellman’s equation

𝛽 𝐵(𝑋,𝑌 ) = L𝐵(𝑋,𝑌 ) + 𝑌 . (33)

The proof is presented in Appendix D, while Lemma 2 in Appendix E lists further properties of 𝑏(⋅) as used in the proofs of 
other results. The price-dividend ratio 𝑏(𝑋) =𝐵(𝑋, 𝑌 )∕𝑌 in equation (32) generalises equation (7), which is a special case for which 
𝜎𝑋 = 𝜎𝑌 = 0. Bellman’s equation (33) indicates that the return on each unit of production capacity is driven by the expected change 
in the state variables, as measured by L𝐵(𝑋, 𝑌 ), while additionally producing the dividend flow 𝑌 .

Given the mean-reverting nature of the excess growth rate 𝑋, it is perhaps unsurprising that Proposition 2 is closely related to 
Vasicek’s (1977) zero-coupon bond-pricing formula.7 The resulting valuation formula (31) has obvious counterparts in the finance 
literature, where affine diffusion models are widely used. For example, when flipping the sign of 𝑋, such that it acts as an excess 
discount rate rather than a growth rate, 𝐵(𝑋, 𝑌 ) can be interpreted as the price of a perpetual bond for which the continuous-time 
coupon payments follow a geometric Brownian motion started at 𝑌 , whose increments may be correlated with those of the excess 
discount rate 𝑋.

Returning to the case where 𝑋 is interpreted as an excess growth rate, Fig. 2 (panel A) plots the function 𝑏(⋅) using our benchmark 
parameters (see footnote 4) as well as 𝜎𝑋 = 0.04, 𝜎𝑌 = 0.02 and 𝜌 = 0, such that 𝜎 ≈ 0.045 per annum from equation (29). The annual 
standard deviation of ∼5% is roughly calibrated to be relevant for rental rates. Panel A shows that 𝑏(⋅) is steeper for lower values of 

7 Specifically, Vasicek’s formula equals the integrand in our equation (32), with some redefinitions: (a) treating our integration (dummy) variable 𝑡 ≥ 0 as the 
bond’s maturity date; (b) flipping the sign of 𝑋 such that it acts as an excess discount rate (applied on top of the time-constant discount rate 𝛽) rather than an excess 
growth rate; (c) setting 𝜇 = 𝜎𝑌 = 𝜎𝑋𝑌 = 0 such that the randomness originates only from 𝑋; and (d) redefining 𝜎𝑋 as 𝜎𝑋∕𝜃. With these changes, the integrand in 
11

equation (32) is equivalent to Vasicek’s bond price as in e.g. Mamon’s (2004, eq. 13) review article.
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Fig. 2. Function 𝑏(𝑋) defined in equation (32).

𝜃, in which case 𝑋 has greater predictive power. In the limit 𝜃→∞, the curve 𝑏(⋅) flattens out at the value 𝛽−10 for all 𝑋. This limit 
corresponds to the classic model (28) and cannot explain the empirically observed heterogeneity in price-dividend ratios.

The theoretical finding that the price-dividend ratio 𝑏(𝑋) increases with the excess growth rate 𝑋 is consistent with the empirical 
results in Sinai and Souleles (2005, p. 765). The valuation formula (31) is therefore useful for the valuation of (growth) stocks, for 
which the growth rate of dividends, i.e. 𝜇 +𝑋0, exceeds the time-preference rate 𝛽. Modelling the growth rate by a mean-reverting 
process is the obvious—and perhaps only—route to obtain bounded asset values in combination with growth rates that temporarily 
outstrip the time-preference rate. Indeed, the new model (25)–(26) allows the short-term growth rate 𝜇 + 𝑋𝑡 to take any value, 
contingent on the long-term growth rate being dominated by 𝛽, as guaranteed by condition (30).

In their seminal work, Campbell and Shiller (1988) assume that the logarithm of the price-dividend ratio, i.e. log 𝑏(𝑋), is linear 
in the dividend excess growth rate 𝑋. We consider instead a linear approximation of 𝑏(𝑋) around the point 𝑋 = 𝜎 = 0, for which 
the associated slope and intercept are provided in closed form in Lemma 2 in Appendix E. Fig. 2 (panel B) shows the resulting linear 
approximation of 𝑏(𝑋) with 𝜃 = 0.15, which turns out to be quite accurate for a wide range of excess growth rates 𝑋.

3.3. Optimal level and timing of investment

Analogous to 𝐾𝑡, 𝐴𝑡, and 𝑉𝑡 in the deterministic model, we define 𝐾(𝑋𝑡, 𝑌𝑡) = 𝐾𝑡, 𝐴(𝑋𝑡, 𝑌𝑡) = 𝐴𝑡, and 𝑉 (𝑋𝑡, 𝑌𝑡) = 𝑉𝑡 to be the 
optimal level of investment, the value of the investor’s committed factor at the time of investment, and the option value of this 
committed factor prior to investment, as functions of the state variables 𝑋𝑡 and 𝑌𝑡. Analogous to equations (11), (13), and (14) and 
𝐾(𝑋, 𝑌 ), 𝐴(𝑋, 𝑌 ), and 𝑉 (𝑋0, 𝑌0) are:

𝐾(𝑋,𝑌 ) ∶= argmax
𝐾≥𝜙

[
(𝐾 − 𝜙)𝛼 𝐵(𝑋,𝑌 ) − 𝐾

]
= 𝜙+ [𝛼𝑌 𝑏(𝑋)]1∕(1−𝛼), (34)

𝐴(𝑋,𝑌 ) ∶= (𝐾(𝑋,𝑌 ) − 𝜙)𝛼 𝐵(𝑋,𝑌 ) − 𝐾(𝑋,𝑌 ) = 1 − 𝛼

𝛼
[𝛼𝑌 𝑏(𝑋)]1∕(1−𝛼) − 𝜙, (35)

𝑉 (𝑋0, 𝑌0) ∶= sup
𝑡≥0

𝔼0
[
e−𝛽𝑡𝐴(𝑋𝑡, 𝑌𝑡)

]
, (36)

where the supremum over 𝑡 in the last line is understood as a supremum over stopping times.
As 𝐴(𝑋𝑡, 𝑌𝑡) scales with 𝑌 1∕(1−𝛼)

𝑡 , while log𝑌𝑡 asymptotically resembles N(𝜇𝑡, 𝜎2𝑡), the asymptotic growth rate of 𝐴(𝑋𝑡, 𝑌𝑡) equals 
𝜇∕(1 − 𝛼) + (1∕2)𝜎2∕(1 − 𝛼)2. Hence, for 𝑉 (𝑋0, 𝑌0) to remain bounded, we require

boundedness of 𝑉 (𝑋,𝑌 ): 𝛽1 ∶= 𝛽 − 𝜇

1 − 𝛼
− 𝜎2

2
1

(1 − 𝛼)2
> 0. (37)

Condition (37) generalises condition (15) for the deterministic case, which is a special case whereby 𝜎𝑋 = 𝜎𝑌 = 0. Using Bellman’s 
dynamic-programming principle,8 𝑉 (𝑋, 𝑌 ) satisfies

8 Alternatively, equation (38) can be derived using contingent-claims analysis, in which case L is interpreted as the infinitesimal generator under the risk-neutral 
12

measure (see e.g. Dixit and Pindyck, 1994, p. 120).
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option value prior to investment: 𝛽 𝑉 (𝑋,𝑌 ) = L𝑉 (𝑋,𝑌 ), (38)

subject to the boundary condition 𝑉 (𝑋,0) = 0 for all 𝑋. Intuitively, equation (38) indicates that, prior to investment, the return on 
the committed factor, 𝛽 𝑉 (𝑋, 𝑌 ), is driven only by the expected change in the state variables, as measured by L𝑉 (𝑋, 𝑌 ). Assuming 
𝜎𝑋, 𝜎𝑌 > 0, the classic value-matching and smooth-pasting conditions9 must hold for all points (𝑋, 𝑌 ) on the investment boundary:

𝑉 (𝑋,𝑌 ) =𝐴(𝑋,𝑌 ), d𝑉 (𝑋,𝑌 )
d𝑋

= d𝐴(𝑋,𝑌 )
d𝑋

,
d𝑉 (𝑋,𝑌 )

d𝑌
= d𝐴(𝑋,𝑌 )

d𝑌
. (39)

The value at the moment of investment, 𝐴(𝑋, 𝑌 ), is determined by equation (35) with equation (32) for 𝑏(𝑋). The function 𝑉 (𝑋, 𝑌 )
is the solution to Bellman’s differential equation (38) that satisfies the value-matching and smooth-pasting conditions (39) for all 
points (𝑋, 𝑌 ) along the investment boundary. Unfortunately, the resulting two-dimensional free-boundary problem cannot in general 
be analytically solved. However, it is straightforward to formulate two necessary conditions, analogous to the zero- and first-order 
conditions (16)–(17), which must be satisfied at the moment of investment and are highly influential in shaping the investment 
region.

3.4. Two necessary conditions

For the model with stochastic dynamics (25)–(26), two necessary (but typically insufficient) conditions for investment to be 
optimal at the point (𝑋, 𝑌 ) are as follows:

zero-order condition: 𝐴(𝑋,𝑌 ) ≥ 0, (40)

first-order condition: L𝐴(𝑋,𝑌 ) ≤ 𝛽𝐴(𝑋,𝑌 ). (41)

Condition (40) is identical to the zero-order condition (16) in the deterministic case, requiring the asset value at the time of in-
vestment to be weakly positive. Condition (41) is near identical to the first-order condition (17) in the deterministic case, the only 
difference being that the infinitesimal generator, L, replaces the time derivative, (d∕d𝑡).

Intuitively, the first-order condition (41) requires 𝐴(𝑋0, 𝑌0) to weakly exceed e−𝛽d𝑡𝔼0[𝐴(𝑋d𝑡, 𝑌d𝑡)] =𝐴(𝑋0, 𝑌0) +(L −𝛽)𝐴(𝑋0, 𝑌0)d𝑡, 
where d𝑡 denotes an infinitesimal time interval. If (L − 𝛽)𝐴(𝑋, 𝑌 ) were strictly positive, postponing investment for a short time d𝑡
would be strictly preferable over investing now. Hence (L − 𝛽)𝐴(𝑋, 𝑌 ) should be weakly negative at the time of investment. This 
fact is well known in optimal-stopping theory; see e.g. Øksendal (2007, remark on p. 217-18) and Øksendal and Sulem (2005, p. 30, 
Prop. 2.3), who restrict themselves to the case 𝛽 = 0. The advantage of this first-order condition is that it can be analytically derived 
prior to solving the option-valuation problem.

Proposition 3 (First-order condition for investment with stochasticity). Let condition (37) hold and let 𝜌 ∈ [0, 1). The first-order condi-

tion (41) can be equivalently expressed as

𝛽𝐾(𝑋,𝑌 )
⏟⏞⏞⏟⏞⏞⏟

flow cost of capital

+ 𝑓 (𝑋) [𝐾(𝑋,𝑌 ) − 𝜙]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
value of extra information

for optimal investment

≤ 𝑌 [𝐾(𝑋,𝑌 ) − 𝜙]𝛼
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

cash flow
after investment

, (42)

where the function 𝑋 ↦ 𝑓 (𝑋), defined in the proof, is a weakly positive sigmoid-like function (i.e. strictly increasing and bounded) that 
vanishes if and only if 𝜎𝑋 = 𝜎𝑌 = 0.

The proof is contained in Appendix F. For the deterministic case 𝜎𝑋 = 𝜎𝑌 = 0, condition (42) collapses to the first-order condi-
tion (19) in the deterministic model. For the stochastic case, the value of the additional information obtained during the infinitesimal 
time interval d𝑡 further increases the hurdle for investment. Hence, the cash flow obtained immediately after investment must now 
cover not only the flow cost of capital, but also the value of additional information that would have been obtained during a short 
delay. Even as the first-order condition (42) accounts for the stochastic nature of the state variables, it does not entirely capture 
the potential benefit of delay as it ignores the possibility that another, possibly sizeable, delay may yet eventuate. Thus, while 
condition (42) is necessary, it is generally insufficient.

For the Cobb-Douglas case, the zero-order condition (40) is automatically satisfied as 𝜙 = 0, while the first-order condition (42)
can be simplified by substituting equation (34) and rearranging to obtain a condition involving 𝑋 but not 𝑌 :

𝛼 (𝛽 + 𝑓 (𝑋))𝑏(𝑋) ≤ 1, (43)

which generalises equation (23), itself a special case with 𝜎𝑋 = 𝜎𝑌 = 0. As the left-hand side is strictly increasing in 𝑋, this first-order 
condition is equivalent to 𝑋 ≤𝑋†, where 𝑋† > 0 is the unique solution to

𝛼 (𝛽 + 𝑓 (𝑋†))𝑏(𝑋†) = 1, (44)

9 The smooth-pasting condition in one dimension is classic, e.g. Moscarini and Smith (2001) and DeMarzo et al. (2012). Recent works that consider multidimensional 
13

cases include Kakhbod et al. (2021) and Chen et al. (2023).
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which generalises equation (24). For our benchmark parameters (see footnote 4 and recall 𝜎𝑋 = 0.04, 𝜎𝑌 = 0.02 and 𝜌 = 0), we find 
𝑋† ≈ 2.44%, which can be compared with 𝑋† ≈ 3.45% in the deterministic case. Hence, the additional term 𝑓 (𝑋†), which accounts 
for the information value obtained during a brief delay, makes the condition 𝑋 ≤𝑋† substantially more stringent.

For the Leontief and Stone-Geary cases, conditions (40)–(41) involve both 𝑋 and 𝑌 . It is convenient to write the zero- and first-
order conditions as 𝑌 ≥ 𝑌0(𝑋) and 𝑌 ≥ 𝑌1(𝑋), respectively, where 𝑌0(⋅) and 𝑌1(⋅) are critical curves to be found. For Stone Geary, 
this can be achieved by using equation (34) and defining

𝑌0(𝑋) ∶=
(

𝛼 𝜙

1 − 𝛼

)1−𝛼 1
𝛼 𝑏(𝑋)

, (45)

𝑌1(𝑋) ∶=
(

𝛽 𝜙

1 − 𝛼 (𝛽 + 𝑓 (𝑋)) 𝑏(𝑋)

)1−𝛼 ( 1
𝛼 𝑏(𝑋)

)𝛼

. (46)

The function 𝑌0(𝑋) is decreasing in 𝑋, indicating that the zero-order condition is more likely to be satisfied when 𝑋 is increased. 
The function 𝑌1(𝑋) with 𝛼 > 0, however, is 𝑈 -shaped with a vertical asymptote when the denominator equals zero, which occurs 
at 𝑋 = 𝑋†. For 𝑋 > 𝑋†, the function 𝑌1(𝑋) is undefined. Hence, the Cobb-Douglas finding persists that 𝑋 ≤ 𝑋† is necessary (but 
typically insufficient) for investment. Equations (45)–(46) remain valid for the Leontief production function by using 𝛼−𝛼 = 00 = 1, 
yielding 𝑌0(𝑋) = 𝜙∕𝑏(𝑋) and 𝑌1(𝑋) = 𝛽𝜙.

In sum, we have analytically derived two critical curves (45)–(46), such that (i) 𝑌 ≥ 𝑌0(𝑋) and (ii) 𝑌 ≥ 𝑌1(𝑋) are both necessary 
for investment to be optimal at (𝑋, 𝑌 ) in the case of Leontief or Stone-Geary production functions. In accordance with these results, 
we will later see (in Fig. 4) that the optimal investment region lies as expected above both critical curves.

3.5. Analytic solution for the Cobb-Douglas case

For the Cobb-Douglas case, we established that 𝑋 ≤ 𝑋† is necessary for investment, where 𝑋† = 2.44% for stochastic state 
dynamics as defined by equation (44), while 𝑋† = 3.45% for the deterministic model as defined by equation (24). This section 
derives a new condition 𝑋 ≤ 𝑋⋆, where 𝑋⋆ ≈ 1.94% for our benchmark parameters, which is both necessary and sufficient for 
investment in the Cobb-Douglas case. This new condition is more stringent than both the deterministic and stochastic versions of the 
necessary condition, i.e. 𝑋⋆ ≤𝑋†, with equality only when 𝜎𝑋 = 𝜎𝑌 = 0.

By providing a closed-form solution for the two-dimensional option-valuation problem with a Cobb-Douglas production function, 
the result below offers a rare exception to the rule that analytic solutions are generally nonexistent for optimal-stopping problems in 
more than one dimension.

Proposition 4 (Analytic solution for Cobb-Douglas case). Let condition (37) hold and let 𝜌 ∈ [0, 1). Assume 𝛼 ∈ (0, 1), 𝜙 = 0 and 𝜎𝑋, 𝜎𝑌 >

0. Investment is optimal if and only if 𝑋 ≤𝑋⋆. For 𝑋 >𝑋⋆ (i.e. prior to investment), Bellman’s equation (38) can be solved in closed form 
as follows:

𝑉 (𝑋,𝑌 ) = 𝐶 𝑌 1∕(1−𝛼) 𝑣(𝑋), 𝑋 >𝑋⋆,𝑌 ∈ℝ>0, (47)

where 𝐶 > 0 is an integration constant. The function 𝑣(⋅) is

𝑣(𝑋) ∶= exp
(

𝑋

𝜃(1 − 𝛼)

)
H−𝛽1∕𝜃

[
1√
𝜃 𝜎𝑋

(
𝑋 −

𝜎2
𝑋
+ 𝜎𝑋𝑌

1 − 𝛼

)]
, 𝑋 ∈ℝ, (48)

where H𝑛(𝑥) is the generalised Hermite polynomial defined in terms of Kummer’s (confluent hypergeometric) function, denoted M(⋅, ⋅, ⋅), as 
follows:

H𝑛(𝑥) ∶= 2𝑛
√
𝜋

⎡⎢⎢⎢⎣
1

Γ
(
1−𝑛
2

) M
(
−𝑛

2
,
1
2
, 𝑥2

)
− 2𝑥

Γ
(
− 𝑛

2

) M
(1 − 𝑛

2
,
3
2
, 𝑥2

)⎤⎥⎥⎥⎦ .
The threshold 𝑋⋆ (exists and) is the unique solution to

𝑏′(𝑋⋆)
𝑏(𝑋⋆)

= (1 − 𝛼)𝑣
′(𝑋⋆)
𝑣(𝑋⋆)

, (49)

where primes denote derivatives. Conditional on 𝑋⋆, the integration constant 𝐶 can be expressed in closed form.

The proof is contained in Appendix G. The necessary and sufficient condition for investment reads 𝑋 ≤ 𝑋⋆ ≈ 1.94% at our 
benchmark parameters, which is naturally more stringent than (i) the necessary (but insufficient) condition 𝑋 ≤𝑋† ≈ 2.44% derived 
in the previous section as well as (ii) the necessary and sufficient condition 𝑋 ≤𝑋† ≈ 3.45% for deterministic state dynamics. Adding 
stochasticity thus further reinforces our main finding that investment is suboptimal when growth is sufficiently high. While 𝑋†

defined by equation (44) accounts for stochasticity and the information value of an infinitesimal delay d𝑡, the optimal threshold 
𝑋⋆ additionally accounts for the fact that after a brief delay d𝑡, another (possibly sizeable) delay may yet eventuate. This further 
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increases the option value, thereby diminishing the region in which investment is optimal.
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Fig. 3. Value of vacant land with Cobb-Douglas production function and benchmark parameters.

Moreover, Proposition 4 demonstrates that investments should, due to high growth, be postponed in a practically relevant number 
of cases. Our benchmark parameters imply that 𝑋 is normally distributed around zero with standard deviation ∼1.10%, such that 
the critical threshold 𝑋⋆ ≈ 1.94% lies ∼1.77 standard deviations above the mean. In turn, this implies that ℙ(𝑋 >𝑋⋆) ≈ 3.82%, i.e. 
high growth could stifle investment ∼4% of the time. This may be an underestimate, however, because the Cobb-Douglas production 
function (which sets 𝜙 = 0) imposes no lower bound on the investment, while the more realistic Stone-Geary production function 
requires the investment to exceed 𝜙 > 0. Indeed, as we will see in the next section, the investment region for the Stone-Geary 
production function is a strict subset of that for the Cobb-Douglas case.

Fig. 3 uses the analytic valuation formulas in Proposition 4 to plot 𝑉 (𝑋, 𝑌 ) and 𝐴(𝑋, 𝑌 ) evaluated at 𝑌 = 1 as a function of 𝑋, 
where 𝑉 (𝑋,1) is depicted only prior to investment, i.e. for 𝑋 exceeding 𝑋⋆. The value-matching and smooth-pasting properties at 
𝑋⋆ are clearly visible as 𝑉 (𝑋⋆, 1) and 𝐴(𝑋⋆, 1) are equal and share the same slope at this point. Unlike classic real-options models 
(e.g. those in Dixit and Pindyck, 1994), the option value 𝑉 (𝑋, 1) is identical to the value of immediately exercising the option 𝐴(𝑋, 1)
at the point at which 𝑉 (𝑋, 1) takes its lowest (rather than its highest) value. We have come across no other real-options models with 
this specific property.

3.6. Numerical solution for Stone Geary and Leontief

For the Stone-Geary and Leontief cases (i.e. with 𝜙 > 0), an analytic solution to the differential equation (38) with boundary 
conditions (39) is no longer available due to the two-dimensional nature of the optimal-stopping problem. To find the optimal policy 
for these production functions, we use two numerical methods detailed in Appendix H.

The first is the Poisson optional stopping times (POST) method (Lange et al., 2020), which is based on the idea that an independent 
Poisson process with intensity 𝜆 > 0 generates multiple opportunities to stop, but the decision maker is permitted to stop only once. 
Specifically, stopping is permissible at one of the Poisson arrival times, but not in between any two arrival times; this can be viewed 
as a ‘liquidity constraint’. In the limit 𝜆 →∞, opportunities to stop arrive almost continuously, such that the liquidity constraint all 
but vanishes.

The second method follows Compernolle et al. (2021) in directly discretising the partial differential equation (38), i.e. (𝛽 −
L)𝑉 (𝑋, 𝑌 ) = 0, using standard finite-difference methods. While they use an upwind scheme to approximate first derivatives, we use a 
combination of up- and downwind schemes as the direction of the drift in our model is not fixed. Because partial differential equations 
can have many solutions without appropriate boundary conditions, we employ the theory of linear complementarity problems (LCPs, 
e.g. Schäfer, 2004 and Cottle et al., 2009) to incorporate the relevant constraint 𝑉 (𝑋, 𝑌 ) ≥𝐴(𝑋, 𝑌 ). The resulting LCP can be solved 
using standard Newton-type methods, as in e.g. Bazaraa et al. (2013).

Our confidence in the numerical solution derives from the fact that both methods (i) have solid theoretical underpinnings with 
guaranteed convergence properties, (ii) show a remarkable degree of agreement when solving the same problem, (iii) are highly 
accurate for 𝜎𝑋 = 𝜎𝑌 = 0 in correctly recovering the investment policies in Fig. 1, (iv) correctly produce stopping regions located just 
above the critical curves 𝑌0(⋅) and 𝑌1(⋅) as predicted by the theory in Section 3.4, and (v) yield near-identical results after extensive 
robustness checks.

Fig. 4 shows the optimal investment policy in the state space for the Leontief (panel A) and Stone-Geary (panel B) production 
functions using benchmark parameters and stochastic state dynamics (25)–(26). Both panels can be directly compared against the 
15

analogous panels in Fig. 1 for deterministic state dynamics. The panels contain the optimal investment region (shaded grey), a 
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Fig. 4. Optimal investment policy with stochastic dynamics (25)–(26).

dotted curve that shows where the zero-order condition (40) holds with equality, and a solid curve that shows where the first-order 
condition (41) holds with equality. Both curves are known analytically; i.e. the dotted curve is 𝑌0(𝑋) in equation (45), while the 
solid curve is 𝑌1(𝑋) in equation (46). In accordance with the theory, the grey investment region lies above both curves, possibly at 
quite some distance.

Panel A, for the Leontief production function, is consistent with our initial hypothesis that investment should be forthcoming if 
𝑌 is sufficiently high. The critical level of 𝑌 that triggers investment is relatively insensitive to 𝑋, implying a zero (or even slightly 
negative) correlation between 𝑋 and 𝑌 at the moment of investment. Panel B, for the Stone-Geary production function, shows that 
investment dries up for growth rates exceeding 𝑋⋆, where 𝑋⋆ was characterised in Proposition 4—this finding contradicts our initial 
hypothesis. For large 𝑌 , the Stone-Geary policy approaches the Cobb-Douglas policy, i.e. to invest if and only if 𝑋 ≤𝑋⋆. In contrast 
with the Leontief production function, the Stone-Geary case implies that 𝑋 and 𝑌 at the moment of investment tend to be positively 
(rather than negatively) correlated, meaning 𝑋 and 𝑌 acts as complements rather than substitutes in spurring investment.

In both panels, the necessary first-order condition (42) is highly influential in shaping the investment region. The solid curve in 
panel B of Fig. 4 is located somewhat higher in the state space than in panel B of Fig. 1, which featured deterministic state dynamics. 
This is because the first-order condition (42) in the stochastic case requires the cash flow after investment to exceed not only the 
capital cost of the investment but also the information value that would have been obtained during a brief delay. Relative to Fig. 1, 
Fig. 4 thus shows that postponing investment has become even more attractive, as uncertainty creates an additional incentive for 
delay.

Finally, Fig. 5 points to an important policy implication of the model. It shows the value 𝑉 (𝑋, 𝑌 ) of the committed factor (e.g. 
land) at the moment of investment for the Stone-Geary case as a function of the excess growth rate 𝑋. When 𝑋 moves from its long-
term average to one standard deviation above this average (i.e. from 𝑋 = 0% to ∼1.1%), the value increases by > 200% (from ∼3 to 
∼10). The high value of vacant land in high-growth cities has been interpreted as a sign of regulatory inefficiency. Here, we show 
that this phenomenon may instead be attributed to the combination of persistent growth rates, flexible but irreversible investment 
and rational investor behaviour.

4. Conclusion

We have shown that in the case of a one-time, flexible but irreversible investment, the cash-flow level and its growth rate are 
positively correlated at the moment of investment, such that they act as complements: a higher growth rate necessitates a higher 
cash flow to trigger investment. Moreover, investment dries up altogether—irrespective of the cash-flow level—when growth rates 
are sufficiently high. While stochasticity in the cash-flow level and its growth rate is inessential to these findings, it does amplify 
them. These results contradict our initial hypotheses that (i) investment should by triggered—irrespective of the growth rate—by 
sufficiently high cash-flow levels, and that (ii) the cash-flow level and its growth rate should act as substitutes in spurring investment 
(i.e. a trade-off between them is considered acceptable), which would imply a negative correlation between these two variables at 
the moment of investment. Only in the case of fixed (i.e. inflexible) investment do these hypotheses appear to hold true.

Our findings rely on two critical assumptions: (i) the growth rate is at least partially (and possibly fully) predictable, (ii) the 
one-off investment is flexible in size, but irreversible. That is, the investor has pre-committed some fixed (i.e. unalterable) factor 
of production, while the second factor of production adheres to a putty-clay capital structure. Assumption (i) is satisfied in many 
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industries, as evidenced by the heterogeneity observed in price-dividend ratios, which is due in part to substantial variation in 
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Fig. 5. Value of vacant land at the moment of construction.

expected growth rates. While the standard model imposes that the (constant) growth rate is exceeded by the time-preference rate, 
our model allows the short-term growth rate take any value, as long as the long-term growth rate is exceeded by the time-preference 
rate. This is relevant as the (short-term) dividend-growth rate of some stocks substantially exceeds the time-preference rate, which 
in the classic model would imply unbounded present values. Our analytic valuation formula may thus have wide applications in the 
valuation of (growth) stocks.

The real-estate market—which accounts for half the world’s capital stock—is a prime example of a sector that satisfies both 
assumptions simultaneously. First, most cities go through prolonged periods of above- or below-average growth in terms of both 
their size and real-estate prices, which are highly correlated. Second, land is a fixed factor that forms an indispensable input for 
construction, while urban infrastructure is highly persistent, consistent with the putty-clay assumption. Manhattan’s rectangular grid 
was laid out more than 200 years ago; likewise, Hausmann’s boulevards in Paris and the canals in Amsterdam.

While the standard prediction is that land values depend solely on cash-flow levels, our model suggests that they are highly 
sensitive to recent growth rates. For our benchmark parameters, the value of vacant land rises by >200%, i.e. more than triples, 
when the growth rate rises from its long-term average by one standard deviation. Similarly, while the standard model posits that 
the density of construction should depend not on growth but on city size, our model suggests that land in booming cities should be 
developed more densely. Empirically testing these contrasting claims would serve as a litmus test to gauge the model’s validity.

By building our model around the above assumptions, we have demonstrated that investors in possession of vacant land should 
rationally postpone construction when the growth rate of the rental price per unit of floorspace exceeds a critical threshold. This 
is not, we argue, merely an esoteric mathematical finding. The majority of investment occurs along the upward-sloping part of the 
investment boundary, implying that the growth rate and the level of the rental price per unit of floorspace act as complements rather 
than substitutes. By implication, an upward shock to the growth rate of a city’s rental rates will stymie rather than speed up new 
construction. This finding is, to the best of our knowledge, novel in the real-options and optimal-investment literature.

Finally, it is our hope that this article contributes to current policy debates on why ‘superstar’ cities (so dubbed by Gyourko et 
al., 2013) attract relatively low levels of investment in construction even as housing prices soar. One may wonder whether letting 
expensive, high-growth locations lie vacant is a market failure. Indeed, a related strand of literature attributes the high value of vacant 
land in the vicinity of growing cities to regulatory inefficiencies (e.g. minimum lot size regulation) due to rent-seeking behaviour 
(e.g. Glaeser et al., 2005, Glaeser and Ward, 2009 and Duranton and Puga, 2023). However, our model contains no externalities; 
hence, the decisions of rational investors are Pareto efficient. The fact that land on the urban periphery remains vacant even as its 
price soars is not a market failure but an efficient, socially optimal response that optimises the option value of land. While private 
investors do not take account of agglomeration externalities, one may conjecture that a social planner would delay investment even 
further, to permit even higher-density construction at a later stage.
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