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Abstract

Recent papers suggest a strong interaction between agglomeration externalities and human

capital. We develop a general equilibrium model with multiple regions where agglomeration

benefits are increasing in human capital. Regions can either be organized as cities with a CBD

or as rural areas. The city form is conducive to knowledge spill-overs but city size is limited by

commuting cost. We estimate the model on US data on housing prices and wages for 47 states

and 34 metropolitan areas from 1979 till 2015. We find strong support for the model. We use

the model for the calculation of two counterfactuals: first without cities, and second without

any agglomeration benefits. We find that land would loose half its value without cities and

almost all its value without any agglomeration benefits.
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1 Introduction

Around 1920, Frits Philips was pondering where to set up the new factory of electric light bulbs.

He considered several villages in the South Eastern part of the Netherlands, like Helmond, Veghel,

and Veldhoven. He ended up in building his factory in the village of Eindhoven. Subsequently,

this little village went through several decades of exceptional growth. By 1950, Eindhoven was

the 7th city of the Netherlands, and 20 years later it had climbed to the 5th rank, a position Eind-

hoven still holds. Philips Electronics built extensive laboratory facilities, which were renowned in

the industry. The city started its own technical university. From 1970 onwards, Philips Electronics

went through a difficult episode. It had a hard time marketing its excellent technological inno-

vations and went almost bankrupt. The renowned laboratories were closed down. Eventually,

Philips decided to move its headquarters to Amsterdam, seeking a more open labour market and

a better connection to the outside world. Eindhoven experienced a deep trough. But in the end,

the backbone of former researchers of Phillips’ laboratories, well trained engineers, many of them

receiving their education at Eindhoven’s technical university, saved the city. There were many

new startups, often supported by Philips. Nowadays, the city is striving again, hosting ASML, the

world leader in new production technologies for ICs. The current market capitalization of ASML

exceeds that of its parent Philips.

This story is just one of many. Gennaioli, La Porta, Lopez-de-Silanes and Shleifer (2013) ana-

lyze the regional distribution of human capital and economic activity in more than 100 countries

across the world. They show that in each country human capital tends to cluster in a small num-

ber of regions. GDP per capita in these regions is much higher than the nation-wide mean. A

simple regression of the regional GDP per capita on the regional mean years of education yields

returns to an additional year of education of e.g. 54% for Brazil, 31% for India, 23% for Colombia,

and 55% for Russia, higher than any reasonable estimate of the private return to human capital,

although one might have reservations regarding the causality of these returns. However, their re-

sults suggest that there are either large agglomeration externalities of human capital or that some

regions have inherent features that makes them more productive than others, see Moretti (2004)

for an overview.

We develop a general equilibrium model with multiple regions where agglomeration benefits

are increasing in human capital. Regions specialize in a particular activity, that is characterized

by the mean level of human capital that this activity requires. Based on the strong persistence in

the industrial structure of regions, see e.g. Amior and Manning (2018), we treat the human capital

requirement of a region as largely exogenously fixed in the short and intermediate run. Following

Gennaioli et.al. (2013), we assume that the benefits from the exchange of ideas are increasing

in the mean level of human capital. This exchange of ideas cannot be adequately internalized

by employers. Hence, wages for workers with equal human capital are higher in regions with
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a high average level of human capital. Since there is free interregional labour mobility, these

wage differentials are offset by the interregional variation in the cost of housing services, or more

precisely, in the price of land on which these houses are build.

To analyze the extent of spatial misallocation, we add a distinction between two forms of spa-

tial organization for a region: cities versus rural areas. The city form is modeled as in Lucas and

Rossi-Hansberg (2002) and Rossi-Hansberg and Wright (2007). Cities are organized around a CBD

that for simplicity is assumed not to use any land, as in Rossi-Hansberg and Wright 2007), and

that is surrounded by residential areas. While workers have to commute to the CBD, ideas don’t

have to travel but can reside in the CBD where they can be exchanged without spatial transmis-

sion cost between all workers who work at that location. This structure is by construction finite

since beyond a certain distance from the CBD, commuting becomes too costly. To the contrary,

the structure of rural areas is scale free. Workers live and work at the same location. Hence, they

do not have to commute. Instead, ideas have to travel between the job locations of workers. This

leads to lower commuting cost, but less exchange of ideas since the spatial transmission of ideas

is costly. Since this rural form has no spatial differentiation between a CBD and its surrounding

suburbs, all location are identical and hence the rural form can be infinitely extended. Since high

human capital activities benefit more strongly from the exchange of ideas, they have a compara-

tive advantage in cities where the CBD facilitates a free exchange of ideas.

This model yields a rich set of predictions. The mechanisms at work can be nicely illustrated

by effect of an exogenous amenity like January temperature on house prices. In a general equi-

librium model without agglomeration benefits, a high January temperature would affect only re-

gional land prices, not wages. In order to offset the pull-force of the agreeable climate on labour

supply, land prices would be higher. In our model with agglomeration benefits, there is also an

effect on wages: high land prices reduce per capita land use as workers substitute away to other

consumption. A lower land use increases the population density in region and therefore the ag-

glomeration benefits. This leads to higher wages which in turn drive up house prices even further.

The model predicts agglomeration benefits to be more sensitive to the mean level of human cap-

ital in cities than in rural areas because cities have an additional margin of adjustment: cities can

adjust average land use per capita and the city-size (= radius), while rural areas can only adjust

land use.

The model is estimated on US data on wages and house prices for 47 states and 34 metropolitan

areas from 1979 till 2016. The estimation of the regional fixed effect in log wages and the average

level of human capital in the region requires special attention due to unobserved human capital.

We apply a Proportionality Assumption derived from a Single Index Model for human capital, see

e.g. Teulings (1995). We provide empirical evidence in favour of this assumption, using occupa-

tion dummies as an instrument for human capital. We argue that the Proportionality Assumption

provides an upper bound for the correlation between observed and unobserved human capital.
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By the same argument, it provides a lower bound for the regional fixed effect in log wages. Using

this correction, we find that for each 10% increase in regional wages due to the private return to

human capital, there is an additional 5% increase in wages due to knowledge spill-overs.

Empirically, the human capital requirement of a region is indeed an important determinant

of this agglomeration effect, consistent with the model’s predictions. We treat this human capital

requirement as exogenous. However, In our empirical application, we must allow for the partial

endogeneity of the mean level of human capital. Hence, we use Bartik instruments based on the

nation-wide shifts in the industry composition and in the mean level of education in each indus-

try. These instruments turn out to be very strong. The model yields multiple over-identifying

restrictions, in particular due to the joint predictions for the effects on wages and house prices.

By and large, we find strong support for the model. Our estimate of the agglomeration elasticity

of human capital is similar to in Genniaoli et.al. (2013). Since the city-form is more conducive

to knowledge spillovers and since these spillovers are more important for activities with a high

human capital requirement, cities have a comparative advantage in these activities. Though we

treat this human capital requirement as exogenous in our model, it will be endogenous in the very

long run, compare Desmet and Rossi-Hansberg (2009). Hence, high human capital activities are

expected to be located in cities. This prediction is strongly supported by the data.

Recently, Herkenhoff, Ohanian, and Prescott (2018) and Hsieh and Moretti (2019) have argued

that incumbents have limited the access to high productive areas by means of land use restriction

in order to preserve the value of their housing property. This is supposed to have led to substantial

spatial misallocation of labour. In this paper, we argue that this claim ignores the limits in extend-

ing the size of high productive areas (usually cities) imposed by the cost of commuting. We find

the several rural areas with relatively high human capital requirements would benefit from the

transition to the urban form of spatial organization. Implementing this transition would require

some form of collective action.

This raises a more fundamental issue. Can incumbents in a region benefit from limiting the

supply of housing to protect the scarcity value of their property, e.g. by zoning restrictions? A

standard supply and demand logic suggests so. However, in a model with agglomeration ben-

efits, this is less evident. A larger population increases the size agglomeration benefits and will

therefore push up wages and hence land prices: the housing demand curve is upward sloped.

Incumbents therefore have no incentive to restrain the construction of new housing. If anything,

incumbents have an incentive to engage in collective action to subsidize new construction paid

for by a Henry George taxation on the excess landvalue to benefit from the positive externality, as

in Rossi-Hansberg and Wright (2007). However, we assume that land owners are unable to solve

this collective action problem. Instead, we assume that the market for residential land is fully

decentralized, both in cities (as in Lucas and Rossi-Hansberg 2002) and in rural areas.

We use the model for the calculation of a number of counterfactuals, first, transforming current
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cities into rural areas, and second, setting all agglomeration benefits on the production side equal

to zero. We calculate these counterfactuals under two assumptions, either with an infinitely elastic

nation wide labour supply, hence keeping workers’ utility constant, or with a fixed labour supply

and hence with an endogenous worker utility. We find that land looses half of its value when we

rule out the city form and almost all of its value if there are no agglomeration benefits at all.

The structure of the paper is as follows. Section 2 discusses our theoretical model. Our em-

pirical evidence is presented in Section 3. In Section 4, we use our model for the calculation of

counterfactuals. Section 5 concludes.

2 Spatial Equilibrium Model

2.1 General structure

We consider an economy consisting of regions indexed r. Workers are endowed with a level of

human capital h. Each worker supplies one unit of labour. Her wage is her only source of income.

For simplicity, there is no physical capital in this economy. Production in each region is governed

by a Leontief technology requiring the inputs of all levels of human capital h in fixed propor-

tions. These proportions are given by the density function of a normal distribution with variance

σ2 common to all regions. However, the mean of this distribution Hr varies between regions,

depending on the type of tradable commodity that is produced in the region; Hr is exogenous.

Tradeables are traded on the nation-wide commodity market. Since all workers have the same

homothetic utility function and since there are no transport cost of tradeables between regions,

the composition of consumption is the same across regions. All land rents are earned by a class

of absentee landlords. Each region has three exogenous characteristics: the mean level of human

capital Hr, an exogenous consumption amenity (January temperature Tr), and whether the region

is organized as a rural area or a city. There is perfect competition on national and regional labour

and product markets, and on regional land markets (a national land market does not exist, since

land is non-tradable between regions).

The model consist of three building blocks:

1. workers’ utility function: free interregional labour mobility sets the utility of a worker with

human capital h equal to some exogenous benchmark for that level of human capital;

2. regional housing markets: workers choose the lot size of their house as to maximize their

utility. Regional log land prices pr adjust to clear the land market. Competition between

regions drives land prices up or down to the point where workers are indifferent between

regions;
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3. agglomeration externalities: depending on the mean level of human capital and on spatial

form (rural areas versus cities), a region benefits from agglomeration externalities.

These three blocks will be discussed in the next subsections. In equilibrium, the log wage

wr (h) of a worker with human capital h living in region r will be a linear function of her human

capital. Since we have not defined the units of measurement of h, the slope of this function can be

normalized to unity without loss of generality by a proper choice of the measure of human capital.

wr (h) = ωr + h. (1)

The intercept ωr differs between regions and is determined endogenously. The equilibrium to this

economy can be described by relations for the endogenous region specific variables ωr and pr that

are (almost) linear in the exogenous region specific variablesHr and Tr. Without loss of generality,

the nation-wide means of these aggregate variables are normalized to zero

E [Hr] = E [Tr] = E [ωr] = E [pr] = 0. (2)

Since their variances are small, the use of a first order Taylor approximation at the point Hr =

Tr = ωr = pr = 0 is justified for most relations in the model. Whenever we use the symbol ∼=, we

refer to a Taylor approximation.

2.2 Workers’ utility

Workers choose in which region r to live and work at the beginning of their career. They do so as

to maximize their utility. Interregional mobility is free. Worker mobility will therefore equalize the

utility of each h-type worker across regions. Since human capital enhances her earning capacity,

this nation-wide benchmark utility u (h) depends on the human capital of the worker. We assume

that total labour supply is perfectly elastic: workers migrate in and out the country until the

utility offered to workers in the United States is equal to the utility elsewhere. The assumption

implies that we can treat u (h) as fixed function. Hence, workers’ utility remains unaffected and all

welfare gains or losses fall upon the class of landlords. We make this assumption just for the sake

of convenience. It does not affect our empirical inference in Section 3. For the welfare analysis in

Section 4 this assumption is relaxed. Without loss of generality, this exogenous benchmark utility

is normalized to the human capital index h:

u (h) = h. (3)

Workers derive utility from the private consumption of tradeables and non-tradeables and

from the availability of amenities/public goods. Tradeables are traded across regions at a constant
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nation-wide log price p, which is treated as the numeraire: p = 0. The non-tradable consumption

good is land, either directly, land that is used for residential purposes, or indirectly, land that is

used e.g. for shopping malls, where the price of the merchandise reflects cost differentials due to

variation in the price of land, or the land that is used by workers providing non-tradable services

and who get compensated for the higher land prices by higher wages.

We consider two types of regional amenities: the January temperature Tr and the spatial den-

sity of income zr. People prefer to live in regions where January temperature is more agreeable,

see e.g. Glaeser (2009). Ahlfeldt, Redding, Sturm and Wolf (2015) show in their study of Berlin that

there are strong and highly localized agglomeration externalities in residential areas. A high local

density allows a dense network of services like shops, restaurants, and cultural performances to be

sustained, as in De Groot, Marlet, Teulings and Vermeulen (2015) and Diamond (2016). Hence, the

higher the log income per unit of land, zr, the higher the quality of the network of these services;

zr will be endogenously determined. The private benefits of regional amenities cannot be priced

directly. Hence, they are reflected in regional house prices. As will be shown, these externalities

play a crucial role in explaining the data.

Workers’ utility function is homothetic with a constant elasticity of substitution between trade-

ables and land. The equilibrium condition for interregional migration can be derived from the cost

function that corresponds to a CES utility function

wr (h)︸ ︷︷ ︸
income = cost

= h︸︷︷︸
benchmark utility

+ η−1 ln
(
λ+ λeηpr

)︸ ︷︷ ︸
price index

− α′ar︸︷︷︸
public goods

(4)

∼= h+ λpr − α′ar

where ar ≡ [Tr, zr]
′ is the vector of public goods, and where λ is the land share in expenditure

when the price of land is unity, pr = 0, and where η is the elasticity of substitution between

tradeables and land; in accordance with the empirical evidence, we assume 0 < η ≤ 1 and 0 <

λ < 1
2 . We adopt the convention that a bar on top of a parameter denotes its complement with

respect to unity, so λ ≡ 1 − λ.1 The left hand side is log income (= cost of obtaining a utility level

h). The first term on the right hand side is the benchmark utility level. This term cancels against

h on the left hand side, showing the consistency of our specification of the endogenous function

wr (h) in equation (1) with the exogenous benchmark utility function in equation (3). The second

term is the CES price index in region r. Since the price of tradeables is normalized to unity, it drops

out. The final term measures the compensating differentials for regional amenities. Other things

equal, regions with high amenities will have lower cost for offering a utility level h. The parameter

1In the second line, we use
ln
(
λ+ λeηp

)
= ηλp+O

(
p2
)
.
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vector α ≡ [αT , αz]
′ measures the compensating differential for one unit of the amenity as a share

of disposable income. Equation (4) must hold identically for all h. This yields an approximately

linear equation with unit slope for the worker’s human capital h as in equation (1), where the

intercept ωr satisfies

ωr ∼= λpr − α′ar. (5)

Log wages in region r must compensate for the level of log land prices multiplied by the land

share in expenditure and for the availability of amenities. Interregional labour mobility therefore

imposes that log wages depend negatively on amenities, controlling for the log price of land pr.

2.3 Regional land markets

By Shephard’s Lemma, the partial derivative of the cost function with respect to price of land is

equal to the demand for land. This implies that the partial derivative of the log cost function with

respect to the log price of land is equal to the land share in expenditure.2 Taking logs yields:

ln [∂e (0, pr, h) /∂pr] = lnλ+ (1− η) pr − ln
(

1− λ+ λe(1−η)pr
)

= lr (h) + pr − wr (h) ,

where the second line is the definition of the log land share in expenditure. Some simplification

and applying a Taylor approximation yields

lr (h) ∼= lnλ− ληpr + wr (h) , (6)

λη ≡ 1− λη; 0 < λη ≤ 1.

For either pr = 0 (the nation-wide mean of house prices) or η = 1 (Cobb-Douglas utility: λη = 1),

the log spending on land is equal to log total expenditure wr (h) plus the log land share in this

expenditure, lnλ. Substitution of equation (1) and (5) yields an expression for the average log land

use lr in region r as a function of the regional fixed effect in the wage equation ωr, the regional

2Let E (Pc, P, U) be expenditure as a function of the price of tradables Pc, the price of land P , and the utility level u.
Since Pc = 1, Shephard’s lemma implies

∂E (1, P, u) /∂P = L,

∂e (0, p, u) /∂p =
∂E (1, P, u) /∂P

E (1, P, u)

∂P

∂p
=

L · P
E (1, P, u)

,

where e (0, p, u) ≡ lnE (1, ep, u). The final expression is the land share in total expenditure.
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amenities ar, and the regional mean level of human capital Hr
3

lr ≡ lr (Hr) ∼= lnλ− λ

λ
ηωr −

λη
λ
α′ar +Hr. (7)

Land use depends negatively on regional wages and amenities and positively on the mean level

of human capital. High wages raise the attractiveness of a region, which pushes up the regional

price of land. Then, the substitution effect reduces average land use. Similarly, high amenities

make a region attractive and therefore increase the price of land, which also reduces average land

use. Since workers’ utility function is homothetic, average land use is proportional to disposable

income and hence to the mean level of human capital.

The density of income in region r is the average income per worker divided by the average

land use, in logs

zr = wr (Hr)− lr ∼= ληλz (ωr + αTTr) , (8)

λz ≡ (λ− ληαz)−1 ,

where the second equality in the first line follows from substitution of the equations (6) and (5)

and where we omit the constant for the sake of convenience. We assume λz > 0, which holds for

the parameters we derive from the literature, see Section 3.4. Substitution in equation (7) yields

lr ∼= −λωωr − ληλzαTTr +Hr, (9)

pr ∼= λz (ωr + αTTr) ,

λω ≡ λ−1
(
λη + λ2

ηλzαz
)
> 0,

again omitting constants. Compared to equation (7), the consumption agglomeration effect zr
increases the effect of ωr and Tr on log land prices.

2.4 Agglomeration externalities

Intra-regional agglomeration externalities or knowledge spillovers are modelled similar to Gen-

naioli, La Porta, Silanes and Shleifer (2013). Our specification reads

ωr = ψ (θHr +mr) + ω0, (10)

wheremr is the number of workers that contribute to the agglomeration externality at a particular

point in space, and where ψ and θ are weakly positive parameters. For ψ = 0, there are no

3We use the mean log value and the log mean value of a house interchangeably. This is incorrect by Jensen’s inequal-
ity. Due to the normality of the distribution of h, the difference is a constant, 1

2
σ2. We treat these terms as normalizing

constants.
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knowledge spillovers. For θ = 0, knowledge spillovers depend only on the number of workers,

not on the level of human capital. Due to the normalization of the average return to human capital

to unity, θ = 1 would imply that knowledge spillovers are proportional to the total wage bill.

Gennaioli et.al. (2013) report evidence that knowledge spillovers increase more than proportional

to the average level of human capital of the regional workforce. This is the case if θ > 1. The

parameter is ω0 is a mean shifter; we set it equal to zero in this section, but we shall need it as

mean shifter of ωr when we confront the model to the data in the next section.

Our modeling of the intra-regional spatial structure combines ideas from Lucas and Rossi-

Hansberg (2002), Rossi-Hansberg and Wright (2007), and Ahlfeldt, Redding, Sturm and Wolf

(2015). In the cities considered in Lucas and Rossi-Hansberg and Ahlfeldt et.al. workers have

to commute between their home and job location and ideas have to travel between the locations

of different jobs. We consider two opposite archetypical spatial structures: rural areas and cities.

In a rural area, people work at their home location. Hence, workers do not commute and ideas

have to travel. In a city, it is exactly the opposite: jobs are concentrated in a Central Business Dis-

trict (CBD). Hence, ideas don’t travel, but workers have to commute. We discuss both archetypes

below.

2.4.1 Rural areas

In rural areas, workers work at the same location as they live and all h-type workers are spread

homogeneously across space. Like Lucas and Rossi Hansberg (2002) and Ahlfeldt et.al. (2015), the

travel of knowledge spills across space comes at a cost: at distance s, only a fraction 1 − δs of the

spillover survives. The maximum distance ideas can travel is therefore δ−1. Only workers working

within a distance δ−1 contribute to the knowledge spillover for a particular worker. Hence, the

knowledge spillover ωrr in region r (the superfix r denotes rural areas) reads

ωrr = ψ

(
θHr − lr + ln

[∫ δ−1

0
2πs (1− δs) ds

])
(11)

= ψ (θHr − lr + lnπ − 2 ln δ − ln 3) .

see equation (10). In the first line, 2πs is the circumference of the circle at distance s of the own

location, 1 − δs is the fraction of the spillovers that survives at this distance, and −lr is the log

population density (the inverse of average land use). By equation (6), average land use lr de-

pends on the price land and on average income, which themselves depend on ωr, see equation (5):

knowledge spillovers drive up the price of land, which in turn increases the population density

and thereby the magnitude of the spill overs, yielding a self reinforcing loop. Substitution of these
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relations in equation (11) and solving for ωrr yields

ωrr = Ψ
(
−θHr + ληλzαTTr + lnπ − 2 ln δ − ln 3

)
, (12)

Ψ ≡ ψ

1− λωψ
.

The parameter Ψ has to be positive for a bounded solution to exist. A bounded equilibrium there-

fore requires

λωψ < 1. (13)

If this condition were not satisfied, the reinforcing loop discussed before would explode. By equa-

tion (6) and (9), λω is increasing in the substitution elasticity between land and other consumption,

η. Were inequality (13) violated, either because the agglomeration parameter ψ were high or be-

cause people could easily adjust their land use (a high η), all economic activity would agglomerate

at a single point in space with an infinite land price and all other land would be empty. For ex-

ample, for η = 1 (Cobb Douglas utility) and αz = 0 (no residential agglomeration externalities),

ωλ = λ/λ > 1. Equation (13) would be easily violated in that case.

η = 1, αz = 0, λη = 1, λz = (λ− αz)−1 , λω ≡ λ−1
(
λ+ λzαz

)
The elasticity of the knowledge spillover ωrr with respect to regional mean level of education

Hr is −Ψθ = Ψ (θ − 1), which is positive for θ > 1: a higher mean education level Hr increase

spillovers. Spillovers raise house prices and therefore reduce land use, which allows a further

increase in spillovers by a higher population density.

Where the labour supply curve dictates that wages should be decreasing in January tempera-

ture keeping land prices constant, see equation (5), the sign of this effect is reversed in the general

equilibrium outcome. A high January temperature increases wages unequivocally. The reason

is that its initial negative effect on wages is fully offset by higher land prices. In the absence of

agglomeration spill overs, wages would be fully determined by labour demand and the positive

effect of January temperature on utility would be offset by higher land prices. Hence, wages would

be independent of land prices. However, as soon as agglomeration benefits come into play, a high

January temperature raises the price of land relative to the price of other consumption. Workers

substitute away from land to other consumption, thereby increasing the population density. This

pushes up the agglomeration benefits. Hence, the labour demand curve dictates that wages are

increasing in January temperature. The labour supply curve is satisfied by land prices rising by

even more than the increase that is required to offset the positive supply effect of the amenity.
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2.4.2 Cities

Like Lucas and Rossi-Hansberg (2002) and Rossi-Hansberg and Wright (2007), cities are assumed

to have a circular shape. Like Rossi-Hansberg and Wright (2007), all employment is localized in

the CBD at the city-center, which does not use any land at all; all jobs are therefore concentrated at

a single point in space and hence, there is no loss in the transmission of ideas. Workers live in the

area around the CBD. The cost of commuting to the CBD is a share κ or labour supply per unit of

distance. Hence, somebody living at a distance s from the CBD works only a fraction 1−κs of her

time; the remainder is lost during commuting. The worker’s output and the knowledge spillovers

she creates are similarly affected. Let Sr denote the edge of the city (the maximum distance from

the CBD). By construction, Sr < κ−1: commuting beyond that distance is useless as it leaves no

time for working.

ωcr

Sr

In Lucas and Rossi-Hansberg (2002) and Ahlfeldt et.al. (2015), land use varies within a city,

depending on the price of land at a each location within the city. This is a more difficult structure

than we are willing to handle for our purpose. We therefore introduce the artificial device of a

city council that equalizes the private cost of commuting as a share of the wage rate wr (h) of

the inhabitants living within city boundary Sr by imposing a balance budget system of taxes and

subsidies. Inhabitants living close to the CBD pay a tax, while those living at the edge of the city

receive a subsidy. These taxes and subsidies balance all commuting cost differentials within the

city. The merit of this assumption is that it makes each location within a city equally attractive.

Hence, land prices and the consumption of land are flat within the city.4

The city council sets the boundary Sr such that a worker living just outside the city is indiffer-

ent between commuting to the CBD to benefit from its agglomeration externalities and working

at her home location, where she does not enjoy any agglomeration benefit at all.5 Hence, ωcr (the

4This assumption is different from the concept of a city planner used in Rossi-Hansberg and Wright (2007) where
cities compete for workers and where the social planner uses all land rents to compete for workers from other cities,
thereby implementing a first best outcome. Our assumption only redistributes land rents and travell cost between the
inhabitants of the city, but leaves the total amount of land rents unaffected.

5This assumption is not fully appropriate. Somebody living just outside the city benefits from the agglomeration
benefits that apply in rural areas, see the previous section. However, since the nearby workers living inside the city
work in the CBD, they do not contribute to the agglomeration benefits of people living just outside the city. Hence,
somebody living just outside the city benefits from approximately half the agglomeration benefits that are enjoyed by
somebody living far away from the city. For the sake of transparency, we choose to ignore these issues.
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superfix c denotes cities) satisfies

ωcr = − ln (1− κSr)⇒ (14)

κSr = 1− e−ωcr .

Let ncr denote the city’s log population and let fr denote the log average net labour supply per

worker after the deduction of commuting cost. Then

mr = ncr + fr (15)

fr = ln

[∫ Sr

0
2πs (1− κs) ds

]
− ln

[∫ Sr

0
2πsds

]
= ln

(
1− 2

3
κSr

)
= ln

(
1 + 2e−ω

c
r
)
− ln 3

Where ideas travel in rural areas, so that people don’t have to commute and κ is therefore irrele-

vant, people commute in cities, so that ideas don’t have to travel and δ is irrelevant. Define ∆ to

be

∆ ≡ ln
δ

κ
. (16)

Ahlfeldt et.al. (2015) report δ > κ and hence ∆ > 0, see their Table V. In the Appendix, we show

that ωcr satisfies

ωcr = Γ [ωrr + 2Ψ∆] , (17)

where Γ [·] is differentiable function with

Γ′ [ω] ≡ γ [ω] > 1,

see the Appendix for the derivation; γ is defined as γ
[
ωrr∈C + 2Ψ∆

]
, where ωrr∈C is mean value of

ωrr among city regions, r ∈ C. The log population of a city ncr follows from inverting equation (10)

and substitution of equation (15) for mr

ncr = ψ−1ωcr − θHr − ln
(
1 + 2e−ω

c
r
)
. (18)

Let ncH > 0 and ncHH < 0 be the first and second partial derivatives of ncr with respect to Hr

evaluated at the mean of ωcr∈C ≡ Γ
[
ωrr∈C + 2Ψ∆

]
, see the Appendix for details. The function Γ [ω]

is depicted in Figure 1, joint with the regression lines and empirical observations for ωrr and ωcr for

the data for 47 rural regions and 34 metropolitan areas in the US, see Section 3 below. The shape

of the function justifies the following claims:

1. There is a critical threshold ωo for ωrr below which an equilibrium of the urban form does

13



not exist.

2. Cities can only be a land price maximizing spatial structure (that is equivalent to: ωcr > ωrr ,

see equation (9)) if the cost of commuting κ are smaller than the spatial decay of knowledge

spillovers δ (or: ∆ > 0). If not, it is always cheaper to let ideas rather than workers travel,

since commuting reduces the time available for knowledge sharing and production, while

the travel of ideas reduces only the former.6

3. For a sufficiently high value of ∆, there is a critical threshold ω∗, such that if ωrr < ω∗ the

rural form is more efficient (ωrr > ωcr) while if ωrr > ω∗ the urban form is more efficient

(ωrr < ωcr); ω∗ ≥ ωo.

4. Since γ > 1, log wages ωr are more sensitive to the average level of human capital and

January temperature in cities than in rural areas. In the latter, the radius of the area around

a location that contributes to the agglomeration benefits is fixed at δ−1. In urban areas, the

radius is determined endogenously, by equation (14). Hence, an increase in Hr raises not

only the spillovers generated within a city of a fixed size; it also increases the size of the city.

5. Though the radius of a city is always increasing in Hr, this is not necessarily true for its

population. Workers with high human capital earn a higher income and therefore consume

more land. The effect of Hr on the city’s radius can be offset by its effect on the population

density. The larger ωcr, the more likely it is that an increase in human capital requirements

reduces the city’s population.

Since ωrr is increasing in the average level of human capital and in January temperature, regions

with a high demand for human capitalHr and an agreeable January temperature generate a higher

land price when organized as a city than as a rural area. A high January temperature increases land

prices and therefore leads to a higher population density, which is conducive to agglomeration

benefits. For θ > 1, this makes a city more attractive for the production of tradeables with a high

demand for human capital Hr. There is therefore a good reason for the IT industry to be located

in California: the agreeable climate supports high house prices, which yields the high density that

is conducive to the knowledge spill overs desired by the IT industry.

2.5 Equilibrium

An equilibrium to this multi-region economy is a set of fixed log wage effects ωr, log average land

use lr, and log land prices pr (for all regions), and the log population size ncr (for cities) as a function

of mean level human capitalHr, the January temperature Tr, and their spatial organization (urban

6This can be see immediately by realizing that equation (14) implies that Sr < κ−1. If κ > δ, then the radius of area
for which a rural region extracts knowledge spill-overs exceeds that for which a city can do.
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Figure 1: Γ (ω) and Empirical Estimates of the Wage Fixed Effect

Note: The plot shows ωcr = Γ(2Ψr∆ + ωrr) and ωrr = Ψr
(
−θ̄Hr + ληλzαTTr

)
, with model parameter

estimates in Table 3. The red curve is the city agglomeration effect ωcr of area r. The blue line ωrr is the
non-city agglomeration effect of area r.

versus rural). These variables must satisfy equations (9), (12), (17), and (18). Since we have data

on house prices - not on land prices - we focus on the value of the land of a representative house

in region r, in logs: vr ≡ lr + pr. The full model reads

ωrr = Ψ
(
−θHr + ληλzαTTr

)
, (19)

ωcr = Ψ · Γ
[
−θHr + ληλzαTTr

] ∼= γΨ
(
−θHr + ληλzαTTr

)
,

vr = (λz − λω)ωr +Hr + ληλzαTTr,

ncr = ψ−1ωcr − θHr − ln
(
1 + 2e−ω

c
r
)
,

∂ncr
∂ωcr

> 0;
∂2ncr

(∂ωcr)
2 < 0,

where we linearize equation (17) in the second equality in the second line and where λη, λω, λz,

and Ψ are defined in equation (6), (8), (9), and (12). The relation between the log population of city

and and the fixed effect in wages is concave. The closer the radius of a city comes to the physical

constraint imposed by the commuting cost, Sr = κ−1, compare equation (14), the smaller are the

opportunities for further extension of the city. The population might eventually decline, when
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the radius is close to its maximum κ−1: a further increase in ωr will then increase the benchmark

utility level Hr of the median citizen. High wealth individuals can afford large lot sizes, thereby

reducing the city’s population.

These equations can be estimated, using data on ωr, vr, Hr and Tr for both rural regions and

cities and on ncr for cities. We apply estimates on the parameters λ, η, ψ, and αz from other sources,

see Section 3.4, which yields expressions for the composite parameters λη, λz, λω and Ψ. Then, the

estimation of equation (19) yields a number of testable predictions:

γ =
ωcH
ωrH

=
ωcT
ωrT

=
vcH − 1

vrH − 1
> 1, (20)

λz − λω =
vcH − 1

ωcH
=
vrH − 1

ωrH

λzαT =
ωcT
γΨλη

=
vcT − (λz − λω)ωcT

λη

θ = 1 +
ωrH
Ψ

= 1 +
ωcH
γΨ

where the subscripts H and T on a variable denotes the partial derivatives of that variable with

respectHr and Tr respectively. Since these functions are approximately linear, these partial deriva-

tives do not depend on r. Hence we omit the subscript r. The first line of equations (20) shows

three independent ways to estimate γ, while the second line shows two independents ways to

estimate λz − λω. Multiple estimates of a single parameter provide over-identifying restrictions

and hence tests of the model. Subsequent lines provides ways to estimate λzαT and θ.7 In the next

section, we use sign restriction on the partial derivatives and the over-identifying restrictions (20)

to test the model.

3 Empirical evidence

3.1 Data

For the estimation of the model, we need data on wages, human capital, housing values, and

January temperature for a set of regions. We draw data from four different sources. Individual

level data are taken from the Current Population Survey, Merged Outgoing Rotation Groups (CPS-

MORG) from 1979 till 2015. We use the hourly wage, years of education, occupation, industry and

other demography information as gender, age, marital status, and race. Our sample includes all

workers age 16 to 64.

For our classifications of regions, we select 34 MSAs for which both individual level and re-

gional level data are available. We then take the remaining part of each state as one non-city

7The two ways to estimate θ do not provide an additional overidentifying restriction, as the information on ωrH and
ωcH is already used in the first line for the estimation γ.
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region. From 1979 to 1985, we use 1970 Census ranking to identify MSAs; from 1986 to 1988, we

use the CMSA and PMSA identifier; from 1989 to 2003, we use MSAFIPS, for the remaining years,

we use CBSAFIPS. We exclude Hawaii and Alaska. Furthermore, New Jersey drops out since all

of its area is part of NY-NJ MSA, leaving us with 34 MSAs and 47 rural areas.

The regional population and employment data are taken from US Census Bureau. The Hous-

ing Price Index (HPI) is taken from the Federal Housing Finance Agency All-Transaction Indexes,

both for MSAs and for the non-MSA part of states. To make the housing price comparable across

regions, we also calculated the housing value index, using the additional information from Zil-

low Research, Zillow Home Value Index. We use the estimated median home value for all homes

within a region. State level data for Maine and Louisiana are missing from this data set. Instead,

we use the average home value at the county level. Average January temperature data is from US

National Oceanic and Atmospheric Administration, 1981-2010 US climate normals, see Glaeser

(2004). All data cover the period from 1979 to 2015 at annual frequency.

3.2 The construction of the human capital index h

Estimation of the model requires data on the average level of human capital Hr and on the fixed

effect ωr in each region. Measuring both variables is a challenge since human capital is only

partially observed. The observed part of human capital Ĥr in a region is likely to be a biased

estimate of the actual level of human capital Hr, since the observed and the unobserved part

of human capital are likely to be positively correlated. Then, the interregional variation in the

observed part is an underestimation of the actual variation in the level of human capital. If so,

the regional fixed effect ωr pickes up this effect unobserved human capital. Hence, its estimate

is upwardly biased in regions with high Hr. We propose a simple correction for this problem

based on this idea of substitutability of observed and unobserved human capital and we provide

empirical evidence supporting our method.

An index for the observed human capital of individual i is constructed by means of a simple

log linear wage equation8

wi = ωr + hi + ei, (21)

hi ≡ ĥi + hi,

ĥi ≡ ω′xi,

wherewi is the observed log hourly wage for worker iworking in region r, where ĥi and hi are the

8The linearity of this equation is not an important restriction on the generality of the analysis, see Gautier and
Teulings (2008). Suppose wages are an increasing but non-linear function of some human capital index h∗: w =
w (h∗) = w (ω′x) , with w′ (h∗) > 0. By defining a transformed human capital index h = w (h∗) the linearity can
be imposed without loss of generality. The non-linearity in the relation with the vector x can then be addressed by
applying a polynomial in x.
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observed and unobserved part of human capital respectively, where ei is measurement error in the

observed log wage, and where xi is a vector of standard personal characteristics like age, years of

education, gender, marital status, and race. Without loss of generality, we assume the components

ĥi and hi to be orthogonal over the full sample of all regions. For the sake of convenience the

index r denotes both the region and the moment of time at which it is observed; hence, there

are R× T values of ωr, where R = 81 denotes the number of regions and T = 37 denotes the

number of years. Since we use cross-section data, an individual is observed only in one region

and at one point in time, so i implies r. The parameter ωr is a fixed effect for region r, and ω is

a vector of parameters of the same dimension as the vector xi which is common to all regions;

the parameter vector aggregates the components xi into the single human capital index ĥi. The

time dummies ωt capture nation-wide inflation and productivity growth. In practice, we estimate

equation (21) by OLS without these time dummies and then demean the estimated ωr for each

time t. Referring to ĥi as the observed human capital of a worker glosses over all kind of hairy

issues like whether the effect of gender or race might attributed to differences in human capital

or that these variables might be proxies for all kind of other processes, like interrupted careers

of women or discrimination against women and blacks. Since our aim is just to agglomerate all

observable variables in a single index that reflects the earning capacity of a worker, we sidestep

these issues.

For the sake of convenience, wi and all elements of xi are demeaned over the full sample.

Hence

E [wi] = E
[
ĥi

]
= E [hi] = E [ωr|t] = 0. (22)

Though the overall means of ĥi and hi are zero, their mean within an individual region might

be different from zero due to selective migration. We define the mean level of observed human

capital in region r as

Ĥr ≡ E
[
ĥi|r

]
.

Hr is defined similarly as the mean of hi for all workers in region r; the means of Ĥr and Hr over

the full sample are zero by construction (since xi is demeaned over de full sample and E[hi] =

0).We define

ωr = ω̂r + E [hi|r] . (23)

Estimation of equation (21) by standard techniques yields an estimate of ω̂r, but not of ωr, because

hi and hence E[hi|r] is unobserved. The Proportionality Assumption below fills this gap.

When we want to use observed human capital Ĥr as an estimate total human capital, we have

to apply a correction for effect of unobserved human capital. For this purpose, we use the single

index assumption, see Teulings (1995): the earning capacity of a worker can be meaningfully

summarized in a single index hi = ĥi + hi, as in equation (21). The critical assumption here is not
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the unit coefficient on both components ĥi and hi
9 or by the linearity of the components10, but in

the additivity, implying that observed and unobserved human capital are perfect substitutes: each

unit of observed human capital can be replaced by a unit of unobserved human capital at fixed

rate of transformation. As a logical implication of this feature, one would expect that a region

that selects workers with high human capital hi selects them both along the observed and the

unobserved dimension. This leads to the Proportionality Assumption stated below.

The Proportionality Assumption

When a worker has human capital hi = ĥi + hi, then the index hi is a sufficient statistic for

the expectation of its observed and unobserved component. In particular, the following relations

apply

E
[
ĥi|hi, r

]
= R2Hr (24)

E [hi|hi, r] =
(
1−R2

)
Hr,

where

R2
h ≡

Var
[
ĥi

]
Var

[
ĥi

]
+ Var [hi]

. (25)

where Var
[
ĥi

]
and Var[hi] are the variance of ĥi and hi in the nation-wide populations.

This assumption is a natural extension of the idea that observed and unobserved human capital

are perfect substitutes and that the decomposition of hi in both components is irrelevant for the

earning capacity of the worker. Taking expectations for region r in equation (24) yields a simple

expression for Hr and ωr as a function of Ĥr and ω̂r:

Hr = R−2
h Ĥr, (26)

E [hi|r] =
1−R2

h

R2
h

Ĥr,

ωr = ω̂r −
1−R2

h

R2
h

Ĥr.

We use equation (21) to estimate the parameter vector ω, the region fixed effects ω̂r, and the

observed human capital, both per individual ĥi and the regional mean Ĥr. The exact composition

of the vector xi and estimation results for the parameter vector ω are presented in the Appendix.

Three examples of the index ĥi characterize the distribution. The 10th percentile of the distribution

of ĥi is -0.426; a typical worker in this group is a black married female with 10 years of education
9Deviations could be eliminated by a simple redefinition of the unit of measurement of hi

10Consider an alternative index ĥ∗i that enters as hi = h
(
ĥ∗i

)
+ hi where h (·) is an increasing function, then we can

replace h
(
ĥ∗i

)
by ĥi = h

(
ĥ∗i

)
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Table 1: Summary Statistics
Individual level Var Decomposition %
Variable S.D. Time Region Time x Region Residual
wir 0.6817 30.3 2.6 0.3 66.8
ĥi 0.3498 5.6 0.6 0.2 93.6
Regional level Correlation Matrix
Variable S.D. Ĥr ω̂r
Ĥr 0.0281 1
ω̂r 0.0836 0.6457 1

and 26 years of experience. The median value of ĥi is -0.012, corresponding to a white married

male with 12 years of education and 8 years of experience. The 90 percentile is 0.429, which

corresponds to a white married female with 18 years of education and 21 year of experience.

Clearly, the median level of ĥi should be close to zero by construction, since we demeaned xi

across the full sample; the only reason for the medians not being exactly zero is that the median is

not equal to the mean.

The estimation results for ω̂r and ĥi are summarized in Table A2. Most of the variance in

observed human capital is within regions; only 0.6% of the variance is between regions. Since the

private return to human capital is normalized to unity, observed human capital explains only only

(0.0281/0.0836)2 = 11% of the interregional variation in wages.

The intra-regional variance in log wages can be decomposed into three orthogonal compo-

nents: observed human capital, unobserved human capital, and measurement error in wages. Let

E be the share of the measurement error in the variance of observed log wages. We use an in-

dependent estimate of E = 0.30 by Angrist and Krueger (1999). Since we observe the variance

of observed human capital, the variance of the unobserved human capital can be backed out as a

residual item. Applying the Proportionality Assumption, see equation (26), we obtain

R2
h = 0.53,

Hr = 1.89Ĥr,

ωr = ω̂r − 0.89Ĥr.

Applying this correction to the interregional variance in observed human capital, human capital

explains 1.892 × 11% = 39% rather than 11% of the interregional variation in log wages.

This calculation depends critically on the Proportionality Assumption. There are several ways

to put this assumption to an empirical test. Single Index Models are a special case of Rosen’s

(1974) hedonic pricing model, see e.g. Sattinger (1975), Teulings (1995, 2005), and Gabaix and

Landier (2007). In these models, workers with high human capital have a comparative advantage
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in complex jobs. In a market equilibrium, they are therefore assigned to such jobs. Since wages are

increasing in human capital, workers in complex jobs have both more human capital and higher

wages. Hence, we can use a measure of job complexity as an instrument for human capital. We

use 3 digit occupational dummies. As a first stage regression, we regress wi on the occupation

dummies and construct an occupation complexity index oi = β′di as the explained part of this re-

gression. LetR2
o be theR2 of this regression, after deducting measurement error in wi; R2

o happens

to be exactly equal toR2
h: 0.53. This index can serve as an instrument for both the observed and the

unobserved part of human capital. Moreover, we can use log wages minus the part explained by

observed human capital as a proxy for unobserved human capital: wi − ĥi = hi + εi (unobserved

human capital plus measurement error in wages, see equation (21)). We therefore regress both ĥi
(observed human capital) and wi− ĥi (unobserved human capital) on the occupational complexity

index oi. If the Proportionality Assumption were perfect the R2 of the regression using ĥi should

be R2
hR

2
o = 0.28, while the R2 of the regression wi − ĥi should be (1− E)

(
1−R2

h

)
R2
o = 0.17. The

actualR2s are 0.36 and 0.12 respectively, so not exactly in line with the prediction, but occupational

complexity clearly correlates with our proxy for unobserved human capital.

We can extend this idea one step further, by estimating separate β-vectors for ĥi and wi − ĥi.
If ĥi and hi measure different aspects of human capital which are not perfect substitutes, as in

a Double Index Model e.g. with both intellectual ability and social intelligence as inputs, they

span a two– rather than an one-dimensional space. Different combinations of ĥi and hi make a

worker apt for different occupations even when their sum hi is the same. Since our occupational

classifications has more than 300 entries, it can be expected to span this two dimensional space.

The linear combination that correlates best to the observed component ĥi should therefore be

different from the linear combination that correlates best to the unobserved component hi. The

β-vectors for both regressions (for ĥi and wi − ĥi respectively) and oi-indexes derived from them

are the same, the Single Index Model applies. The actual correlation between both oi-indexes is

0.70. Hence, the Single Index Model gives a fairly accurate though not perfect description of the

data. In the IV interpretation of using occupation data as an instrument for human capital, the

correlation between both oi-indexes is equivalent to the standard over-identification test of the

instruments. If the correlation coefficient were equal to unity, the test would be accepted. As a

point estimate, the null is clearly rejected. However, the high correlation coefficient shows the

Single Index Model to be a reasonable first order approximation.

The correction of Hr and ωr for unobserved human capital can be considered as the limiting

case, where interregional variation observed and unobserved human capital, Ĥr and Hr is per-

fectly correlated. The inferred interregional variation of Hr can therefore be viewed as an upper-

bound for the true variation. Since this variation enters negatively in the corrected estimate for the

regional fixed effect in log wages ωr, see equation (26), this corrected estimate is a lower bound

for the true variation in ωr; this estimate can therefore viewed as lower-bound for the true human
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capital externalities.

3.3 Estimation

In our model, average human capital and January temperature are treated as exogenous regional

characteristics. While most economists would be willing to buy the exogeneity of January tem-

perature, they are unwilling to accept to exogeneity of the average human capital in a region. One

would expect that the level of human capital in a region responds to all kind of changes, like better

amenities, a greater supply of houses, and a greater availability of suitable jobs for people with

a particular level of human capital. Which of these factors is the ultimate driver of changes in

human capital is not a prior clear. We need therefore an instrument for the exogenous variation

in the regional level of human capital. The regional industrial structure has a long memory, see

Amior and Manning (2018). Differences in industrial structure can therefore be helpful to explain

the interregional differences in average human capital and their evolution over time. We con-

struct two versions of this Bartik instruments for the regional average level of human capital, see

Goldsmith-Pinkham, Sorkin, and Swift (2018) for a discussion.

The first instrument weighs nation-wide changes in the industry mix and the average level of

education in each industry (both excluding the own region) by the regional average industry mix

H̃B
rt =

∑
j

Erj
Er

g(−r)jtH(−r)j

where Hj is the nation-wide mean level of human capital in industry j (where we use the sub-

script (−r) to denote that we exclude region r from the calculation of the nation wide mean),

where Erjt is the employment in region r in industry j at time t, and where g(−r)tj is the nation-

wide evolution of employment in industry j relative to the evolution of total employment E(−r)t,

g(−r)jt =
E(−r)jt
E(−r)j

− E(−r)t
E(−r)

. This instruments put the weight on nation-wide changes in the industry

mix. If a region has a larger share of growing industries with a high human capital requirement,

the demand for human capital in the region goes up. We refer to this instrument as the between-

industry instrument. Since T−1ΣT
t=1E(−r)jt = E(−r)j , ΣT

t=1g(−r)jt = 0, this instrument is undefined

for the cross-section.

The second instrument weighs nation-wide changes in the human capital requirement within

industries by the regional average industry mix

H̃W
rt =

∑
j

Erj
Er

H(−r)jt

If a region has a larger share of industries with an increasing human capital requirement, the

demand for human capital goes up. We refer to this instrument as the within-industry instrument.
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furthermore, T−1ΣT
t=1H(−r)jt = H(−r)j . This instrument exists for both the panel and the cross-

section version of the model.

Table 2 presents the estimation results, both for the cross-section (left panel) and the time-

series evidence (right panel). Column (1) gives the results for the first stage regression for the

cross-section and the time-series part of the analysis. We enter both the instrument and its square.

In both cases, the instrument is strong. In the cross-section, the squared instrument is significant.

This might capture an agglomeration effect in innovation intensive industries, compare Desmet

and Rossi-Hansberg (2009): if a region has an above average share in an industry, then it is likely

to be the innovation hub of that industry. Hence, an increase in the human capital requirement of

that industry will disproportionally favour this region. Column (2) and (3) uses the instrument to

analyze the cross-section effect of education on housing values and the wage fixed effect. Using

the instrument for human capital renders the city dummy insignificant (city-size is not included,

as it is endogenous in the model). January temperature and human capital have the predicted

sign. The positive effect of January temperature on house prices is a standard prediction: house

prices would pick up the amenity-value. However, in a model without agglomeration benefits,

one would expect wages to be independent of January temperature: wages would be determined

by nation-wide product market competition. In a model with agglomeration effects, the upward

effect January temperature on house prices reduces average lot-size and therefore increases the

agglomeration benefits, pushing up wages. Our normalization of the private return to human

capital to unity provides an easy interpretation of the coefficient on human capital in the regres-

sions for ωr: for example, a coefficient of 0.912 in the cross-section regression implies that if the

level of human capital of all workers in a region is increased by one unit, this would yield a private

return of unity and an additional ”social” return from agglomeration benefits of 0.912. These num-

bers square well with the high social return to human capital reported by Genniola et.al. (2013).

Splitting the sample in cities and rural areas shows that the effect of human capital and January

temperature on house prices and the wage fixed effect to be larger in cities than in rural areas as

the model predicts. None of the variables is able to explain the variation in city-size, see column

(4).

The time-series results for the within instument are in column (5) to (8), the results for the

between instrument are in column (9) to (12). In both cases, the instruments are strong. Human

capital has strong positive impact on house prices and the wage fixed effect, in the sample as a

whole and in the sub-samples for cities and rural areas, where again the effect are more positive

for cities than for rural areas. The results for the between and the within instrument are very

similar, though the coefficients tend to be somewhat larger for the within instrument, in partilar

for house prices. The Haussman overidentification test of the instruments is even rejected in some

cases. Moreover, the results have similar orders of magnitude as the cross-section results. The

results for city-size are surprisingly strong, see column (8): the first derivative is positive, while
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the second is negative, exactly as theory predicts. Both coefficients are highly significant.

3.4 Identification and testing

We apply the estimation results to obtain rough estimates of the parameters of the model. More-

over, we get some idea of the validity of the over-identifying restriction listed in equation (20).

A number of standard parameters are derived from the literature. Doing so will tie our hands

when trying to match our estimation results. Ahlfeldt et.al. (2015) assume a floor space share for

residential use of 25% and for commercial use of 20%, adding up to 45%. Using a land share of

40% in the value of real estate, the land share λ in consumption is about 0.18. They report the

agglomeration elasticity for consumption αz to be 0.10 and for production ψ to be about 0.08, see

their Table V. Albouy, Ehrlich and Liu (2016) and Teulings, Ossokina, and De Groot (2018) report

evidence that the elasticity of substitution η is less than unity. We use a value of a half:

αz = 0.10, ψ = 0.08, λ = 0.18, η = 0.50.

Using these numbers, we obtain:

λη ≡ 1− λη = 0.59, (27)

λz ≡ (λ− ληαz)−1 = 8.3,

λω ≡ λ−1
(
λη + λ2

ηλzαz
)

= 3.9,

Ψ ≡ ψ

1− λωψ
= 0.12,

Note the importance of allowing for residential agglomeration benefits. If αz were equal to zero,

λz would be 5.6 instead of 8.3, while λω would be 2.3 instead of 3.9. Hence, λz − λω would be 2.3

rather than 4.4, much lower than the value that we estimate, see below.

Table 3 provides a rough estimate for the remaining parameters. We just provide point esti-

mates, based on the estimation results in Table 2. We don’t report point estimates when either the

numerator or the denominator has a t-statistic of less than 0.5. Using the formula for the stan-

dard deviation of the ratio of two independent stochastic variables, we conclude that non of the

overidentifying restrictions is rejected. For the time-varying variable Hr, we have three estimates

(cross-section and two instruments for the time-series). For the time-invariant variable Tr, we

have only cross-section estimates. Altogether, we have ten different estimates for the excess sen-

sitivity of house prices and wages in cities relative to rural areas γ, which is predicted to be larger

than one. The t-statistics of either the numerator or the denominator of three of these estimates are

below the 0.5 threshold. The mean of the remaining seven estimates is roughly γ = 2. Only the

estimate based on (vcH − 1) / (vrH − 1) deviates substantially, but this difference is not significant.
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Table 2: Bartik IV Regression Results
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

VARIABLES Hr vr wr nr Hrt vrt wrt nrt Hrt vrt wrt nrt
Bartik IV W W W W W W W W B B B B
Time Dummy - - - - Y Y Y Y Y Y Y Y

Panel A: City and Non-City Sample
ln Jan Temp -0.0504 0.420 0.0831

(-4.71) (3.85) (3.79)
Bartik IV 1.074 1.162 0.972

(4.70) (10.32) (10.68)
Bartik IV sq. 9.412 -0.056 -1.698

(2.20) (-0.60) (-2.53)
Human Capital Index 5.093 0.912 5.783 -0.0722 2.131 0.663

(4.08) (3.64) (8.12) (-0.70) (4.78) (5.12)
Metro Dummy 0.0395 -0.158 0.0238

(4.36) (-1.55) (1.16)

Observations 81 81 81 2,997 2,997 2,997 2,997 2,997 2,997
Panel B: City Sample

ln Jan Temp 0.786 0.0928 4.021
(4.15) (2.50) (0.75)

Human Capital Index 7.138 1.186 71.89 10.61 0.735 4.910 5.144 0.542 4.046
(3.99) (3.38) (0.69) (4.74) (2.73) (3.20) (4.55) (2.60) (4.29)

Human Capital Index sq. -662.3 -3.886 -4.288
(-0.66) (-5.19) (-5.26)

Observations 34 34 34 1,258 1,258 1,258 1,258 1,258 1,258
Panel C: Non-city Sample

ln Jan Temp 0.0930 0.0633
(0.72) (2.24)

Human Capital Index 1.817 0.494 2.373 -0.0903 0.642 0.535
(1.08) (1.35) (5.18) (-0.86) (1.44) (3.72)

Observations 47 47 1,739 1,739 1,739 1,739

Note: Robust t-statistics in parentheses.
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We have eight independent estimates of the effect of human capital on the agglomeration force,

θ. Ignoring the one case where the estimate is insignificant, all estimates are in the same ballpark.

This ballpark is similar as reported by Gennaioli et.al. (2013), who report θ = 6. The parameter

λz − λω can be derived from our a priori assumptions, see equation (27). Except for one estimate,

all estimates fit this value. The estimate for the parameter λzαT are all around the ballpark of 0.9.

The parameters ∆ = ln (δ/κ) and ω0, see equation (10), are derived by means of the following

argument, see Figure 1. Let ωr denote the actual value of the fixed effect in log wages in region

r as estimated for the wage data and let ω̂rr be the predicted value of ωrr from the data on human

capital Hr and January temperature Tr, using the estimation results in Table 2 for rural areas.

Figure 1 plots the points ωr as a function of ω̂r for both rural and urban regions; red crosses and

blue circles respectively. By construction, the red regression line for rural areas coincides with

the main diagonal. The point on this line denotes the mean value ωrr∈C for cityies if they were

organized as rural regions, r ∈ C. The blue line is the regression line for cities. The point on this

regression line corresponds to ωrr∈C. The slope of the blue line is γ = 2. Let ∆Γ be the gain in log

wages of being organized as a city rather than as a rural region for ωr = ωrr∈C. This wage gain is

7.5%. We identify ∆ and ωcr as the solution to the system

γ = γ [ωrr∈C] , (28)

∆Γ ≡ Γ [ωrr∈C + 2Ψ∆]− ωrr∈C.

The solution is elaborated in the Appendix. The parameter ω0 in equation (10) serves as a mean

shifter that sets ωrr∈C to the appropriate value. We find ∆ = 1.09, which is lower than reported

in Ahlfeldt et.al. (2015), who report ∆ = ln δ/κ = 2.70, see their Table 5. The figure shows that

ω∗ = ωo: even for smallest value of ωrr for which is city is feasible, the urban form is more efficient

than the rural form. Quite a number of rural regions would be better off by organizing themselves

as cities as to benefit from the higher knowledge spill overs. Seen through the lens of our model,

these regions have been unable to solve the coordination problem of where within the area of the

city to locate their CBD. Hence, they got stuck in the rural form with dispersed economic activity.

In this model where all investment in housing is reversible, a city can never get stuck in the city

form while the rural form is more efficient: if ωr would drop below ω∗ = ωo, the city would simply

collapse.

Relative to the other parameters, which fit our theoretical expectations reasonalby close, the

estimates for the elasticities ncH and ncHH do have the right sign but are a factor two to four higher

than our theoretical prediction.

Although the model treats the mean educational requirement Hr of a region’s activities as

exogenously determined by long run forces governing the regional industrial structure, this struc-

ture will be endogenous in the very long run. Entrepreneurs setting up activities that require an
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Table 3: Structural identification and over-identification restrictions
cross-section time-series time-series

γ 2.0 rough mean estimate
ωcH
ωrH

2.4 − 1.2∗∗

ωcT
ωrT

1.5∗ n.a. n.a.
vcH−1
vrH−1 − 6.7∗∗ −
θ 5 rough mean estimate

1 +
ωcH
Ψc 6.1∗∗ 4.2∗∗ 3.7∗∗

1 +
ωrH
Ψ 5.3 − 5.3∗∗

λz − λω 4.4 from equation (27)
vcH−1
ωcH

5.2∗∗ 13.1∗∗ 7.6∗∗

vrH−1
ωrH

1.7 − −
λzαT 0.85 rough mean estimate
ωcT
γΨλη

0.7∗∗ n.a. n.a.
ωrT

Ψλη
0.9∗ n.a. n.a.

vcT−(λz−λω)ωcT
λη

0.9∗∗ n.a. n.a.

ncH 7.4 from Appendix, see equation (31)
ncH − 4.9∗∗ 4.3∗∗

ncHH −18.2 from Appendix, see equation (31)
ncHH − −4.3∗∗ −3.9∗∗

Note: n.a.: not available; -: lowest t-stat<0.5; blank : lowest t-stat<1.5; *: lowest t-stat<2.5; **: lowest
t-stat>2.5.
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extensive exchange of ideas will benefit from the existing urban infrastructure. Boston’s supply

of well educated workers attracted research intensive firms. The model predicts that cities have

a comparative advantage in human capital intensive activities. Table A3 list the 87 regions in our

sample by their mean level of human capital over the sample period. Cities rank high in this table,

as the model predicts. The case of Riverside/Los Angeles is interesting. Though the city opened

one of the first underground lines in the US in 1925, this line was closed down in 1955. The city

became to rely heavily on car transport, which is land-intensive and therefore does not allow the

high densities that are conducive to agglomeration benefits (a low commuting cost κ). This might

explain why the city is less attractive to activities with a high human capital requirement.11

4 Counterfactuals

We use the model for the calculation of several counterfactuals. We use the linearized version

of the model in equation (19) with full version for the function Γ [·] and equation (7) for the log

average land use. First, we calculate a reference point that is consistent with the model, using

the data on Hr and Tr; we use the average value of Hr for the period 1977-2015. We to calculate

ωrr for all regions. Then, we solve the implicit function Γ [ωrr + 2Ψ∆] to obtain values for ωcr and

ncr for cities. These data are use to calculate the log average land use lr for all regions. For rural

regions, we use the actual population nrr as as a point of reference. For cities, we use the calculated

population ncr. The total land available for economic use, Ar, is then equal to

Ar = exp (nr + lr) .

We keep this endowment of land for each region fixed in all counterfactuals. The radius Sr of cities

is determined endogenously and hence the land areaAr. However, since there are no cities is both

counterfactuals, this does not affect the calculation of the counterfactual. The counterfactual keeps

the land area constant and calculates the counterfactual population by dividing this land area by

the counterfactual average land use.

We consider two counterfactuals. In the first, we rule out the city form. All regions have to

take the rural form. In the second, we assume that there are no agglomeration externalities on

the production side, so ψ = 0, although we do allow for agglomeration benefits on the consump-

tion side, via the log income per unit of land, zr. We calculate two versions of each of these two

counterfactuals. In the first version, we assume that aggregate nation-wide labour supply is in-

finitely elastic. Hence, the population will adjust to the exogenous benchmark level of utility. All

11See for ranking public transport systems of cities:
https://www.businessinsider.com/cities-with-best-public-transportation-systems-2014-

1?international=true&r=US&IR=T
https://smartasset.com/mortgage/best-cities-for-public-transportation
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Table 4: Aggregate results for Counterfactuals
Counterfactual No city form No agglomeration 1979-2015
Elasticity Labour Supply ∞ 0 ∞ 0 (Level 79-15) Model Actual (Level 1979)
∆landrent (%) -34.2 -12.5 -97.1 -56.0 2.03E+10 1499.9 540.1 5.3E+09
of which: cities (∆,%) -58.8 -45.2 -98.6 -78.5 1.18E+10 2567.1 643.0 2.52E+0.9

rural (∆,%) 0 33.0 -95.1 -24.6 8.50E+09 546.2 449.3 2.82E+0.9
∆population (%) -12.4 0 -79.4 0 1.64E+08 − 44.8 1.42E+08
of which: cities (∆,%) -32.8 -21.5 -86.0 -30.1 6.21E+07 163.5 47.8 5.78E+07

rural (∆,%) 0 16.8 -75.4 22.8 1.02E+08 46.35 42.3 8.44E+07
∆utility (income equi. ∆,%) 0 -2.9 0 -33.9 0.16 35.5 116.3 0.39
∆H (market prices, %) 0 0 0 0 0.16 − 0.40 0.39

welfare effects fall upon the class of absentee landlords. In this version, ruling out the city form

will have no effect on rural regions. In the second version, we assume that total labour supply

is fixed but that the distribution of human capital adjusts to the shifts in demand. This implies

that workers utility u (h) will become endogenous. A simple way to deal with this counterfactual

while still using the expressions in equation (19) is to change the Januari temperature Tr in all re-

gions by the same amount. An increase in temperature is equivalent to a fall in the outside utility

(because the increase in temperature is counterfactual: a worker would still get receive the same

utility if the temperature would have increased, but is hasn’t, making him worse of). We adjust

the temperature till the total population in the counterfactual is the same as in reference point.

The aggregate results for this exercise are presented in Table 4. Results per region are presented

in the Appendix.

Finally, we solve the model with the data forHr in 1979 and 2015. We calculate a new reference

point for 1979 based on the population in rural areas in that year, the data for Hr, and the model

prediction for the population of cities in 1979. Next, we calculate a counterfactual using the actual

growth of the total population from 1979 till 2015 and the data for Hr for 2015. The radius Sr of

cities may shrink or grow compared from the reference point in 1979 to the endpoint in 2015 in

this counterfactual. To avoid inconsistencies in the land endowment, we subtract the additional

use of a city from the land endowment of the rural region of the state to which the city belongs,

and the reverse when a city uses less land.12

5 Conclusion

TO BE COMPLETED

12For SMSA that belong to multiple states, we the state with the largest weight. We merge New Jersey to New York
and DC to Maryland respectively since New Jersey and DC have no free rural available.
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Appendix Derivation of ωcr and ncr

The population of a city satisfies

ncr = ln

[∫ Sr

0
2πse−lrds

]
= lnπ − 2 lnκ+ 2 ln (κSr)− lr

= λωω
c
r −Hr + ληλzαTTr + lnπ − 2 lnκ+ 2 ln (κSr)

= Ψ−1ωrr + λωω
c
r − θHr + 2∆ + 2 ln (κSr) + ln 3.

where substitute equation (7) for lr and equation (16) for ln δ − lnκ in the second line. Using this

result and equation (15) yields

ωcr = ψ (ncr + fr + θHr) (29)

= ψ
[
Ψ−1ωrr + λωω

c
r + 2∆ + 2 ln (κSr) + ln (3− 2κSr)

]
= ωrr + Ψ

[
2∆ + 2 ln

(
1− e−ωcr

)
+ ln

(
1 + 2e−ω

c
r
)]
,

where we substitute equation (12) for ωrr and equation (14) for κSr. Hence

ωrr + 2Ψ∆ = ωcr −Ψ
[
2 ln

(
1− e−ωcr

)
+ ln

(
1 + 2e−ω

c
r
)]
. (30)

Define the implicit function Γ (·) such that

Γ−1(ωcr) ≡ ωcr −Ψ
[
2 ln

(
1− e−ωcr

)
+ ln

(
1 + 2e−ω

c
r
)]
⇒

ωcr = Γ (ωrr + 2Ψ∆) .

Define the implicit function Γ (·) such that

Γ−1(ωcr) ≡ ωcr −Ψ
[
2 ln

(
1− e−ωcr

)
+ ln

(
1 + 2e−ω

c
r
)]
⇒

ωcr = Γ [ωrr + 2Ψ∆] .
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The first line of equation (28) can be solved for e−ω
c
r∈C

γ ≡ Γ′ [ωrr∈C + 2Ψ∆] =
dωcr∈C

dωrr∈C

⇒

γ−1 = 1− 6Ψe−2ωcr∈C(
1− e−ωcr∈C

) (
1 + 2e−ω

c
r∈C
) < 1⇒

Ω =
e−2ωcr∈C(

1− e−ωcr∈C
) (

1 + 2e−ω
c
r∈C
) , Ω ≡ − γ

6Ψγ
⇒

ωcr∈C = − ln

(
Ω +

√
Ω (9Ω + 4)

4Ω + 2

)
.

Then, the second line can be solved for ∆

∆ ≡ ∆Γ

2Ψ
−
[
ln
(
1− e−ωcr∈C

)
+

1

2
ln
(
1 + 2e−ω

c
r∈C
)]
.

By equation (12), Hr can be written as

Hr = −
(
Ψθ
)−1

ωrr ,

where we omit terms that do not depend on Hr. Substitution in equation (18) yields

ncr = ψ−1ωcr +
θ

Ψθ
ωrr − ln

(
1 + 2e−ω

c
r
)

+ ln 3

= θ
−1 [(

ψ−1 − λωθ
)
ωcr − ln

(
1 + 2e−ω

c
r
)
− 2θ ln

(
1− e−ωcr

)]
+ cons.

where we substitute ωrr for equation (30). The first two partial derivatives of ncr with respect to ωcr
read

ncω = θ
−1
(
ψ−1 − λωθ +

2e−ω
c
r

1 + 2e−ωcr
− 2θe−ω

c
r

1− e−ωcr

)
,

ncωω = θ
−1
(
−2e−ω

c
r

(1 + 2e−ωcr)2 +
2θe−ω

c
r

(1− e−ωcr)2

)
,

Using ωcH = −γΨθ, the partial derivatives of ncr with respect to Hr read

ncH = −γΨθncω = −γΨ

(
ψ−1 − λωθ +

2e−ω
c
r

1 + 2e−ωcr
− 2θe−ω

c
r

1− e−ωcr

)
= 7.41, (31)

ncHH =
(
γΨθ

)2
ncωω = − (γΨ)2 (θ − 1)

(
−2e−ω

c
r

(1 + 2e−ωcr)2 +
2θe−ω

c
r

(1− e−ωcr)2

)
= −18.23,

Ω = 0.72, ωcr = 0.34.

where the numerical values follows Ψ = 0.12, ψ = 0.08, λω = 3.9, θ = 5, and γ = 2.
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Table A2: Individual Mincerian Wage Regression
Variables Coefficient t-stat Variables Coefficient t-stat
Male 0.419 (448.59) Edu = 0 -0.652 (-98.12)
Male × Time Trend -0.00565 (-118.75) Edu = 1 -0.532 (-36.40)
Single 0.0516 (40.86) Edu = 2 -0.540 (-76.20)
Male × Single -0.283 (-172.09) Edu = 3 -0.532 (-86.27)
Single × Time Trend -0.00287 (-48.72) Edu = 4 -0.452 (-73.50)
Male × Single × Time Trend 0.00449 (55.31) Edu = 5 -0.475 (-113.51)
Divorced 0.0213 (14.06) Edu = 6 -0.426 (-129.18)
Male × Divorced -0.107 (-41.03) Edu = 7 -0.357 (-115.49)
Divorced × Time Trend -0.00175 (-0.196) Edu = 8 -0.264 (-128.79)
Male × Divorced × Time Trend 0.00185 (15.19) Edu = 9 -0.260 (-180.71)
South 0.00858 (2.58) Edu = 10 -0.194 (-188.11)
Black -0.0975 (-96.7) Edu = 11 -0.157 (-167.93)
Black × South -0.0382 (-28.34) Edu = 13 0.0611 (67.86)
Other Race -0.0834 (-69.98) Edu = 14 0.168 (193.93)
Other × South -0.00692 (-2.75) Edu = 15 0.212 (136.26)
Year of Experience 0.0299 (51.92) Edu = 16 0.420 (373.93)
Exp × Edu 0.00151 (33.78) Edu = 17 0.405 (171.13)
Exp2 / 100 -0.0445 (-16.72) Edu = 18 0.576 (326.16)
Exp2 / 100 × Edu -0.00842 (-40.15) Constant 1.109 (267.11)
Exp3 / 100000 0.183 (5.25)
Exp3 / 100000 × Edu 0.102 (36.01) Observations 5,426,947
Edu in y9297 0.00463 (21.76) R-squared 0.575

R-MSE 0.444

Note: Table presents the estimated β using OLS regression. Dependent variable is the log hourly wage.
Mincer wage regression includes individual characteristics x, gender, year of education, year of
experience, race, marital status, and the interaction of these factors. All the regressions include time x
region dummies. Robust t-statistics in parentheses.
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Table A3: Ranking of Regions in Human Capital Level
Region HC Index Type Region HC Index Type
Boston, MA 0.139 City North Dakota 0.005 Non-city
San Jose, CA 0.128 City Kansas 0.003 Non-city
San Francisco, CA 0.128 City Nebraska -0.002 Non-city
Seattle, WA 0.122 City Oklahoma -0.002 Non-city
Connecticut 0.104 Non-city Illinois -0.004 Non-city
Portland, OR 0.103 City Iowa -0.005 Non-city
Denver, CO 0.101 City Pennsylvania -0.008 Non-city
Washington, DC 0.093 City Arizona -0.008 Non-city
Pittsburgh, PA 0.088 City Utah -0.009 Non-city
Minneapolis, MN 0.084 City Idaho -0.010 Non-city
Rochester, NY 0.073 City Wisconsin -0.011 Non-city
New Hampshire 0.064 Non-city Dallas, TX -0.012 City
Colorado 0.063 Non-city Ohio -0.013 Non-city
New York, NY 0.062 City Kentucky -0.013 Non-city
Kansas City, MO 0.061 City Florida -0.013 Non-city
Vermont 0.057 Non-city Delaware -0.015 Non-city
Philadelphia, PA 0.054 City Miami, FL -0.019 City
New York 0.047 Non-city Houston, TX -0.025 City
Milwaukee, WI 0.046 City Greensboro, NC -0.026 City
Chicago, IL 0.045 City Minnesota -0.026 Non-city
Indianapolis, IN 0.044 City New Orleans, LA -0.027 City
San Diego, CA 0.042 City California -0.030 Non-city
Baltimore, MD 0.037 City South Dakota -0.031 Non-city
Massachusetts 0.036 Non-city Indiana -0.031 Non-city
Detroit, MI 0.034 City Virginia Beach, VA -0.031 City
Cleveland, OH 0.033 City Virginia -0.036 Non-city
Atlanta, GA 0.033 City Missouri -0.037 Non-city
Montana 0.031 Non-city North Carolina -0.038 Non-city
St Louis, MO 0.027 City Nevada -0.040 Non-city
Maine 0.027 Non-city Tennessee -0.040 Non-city
Buffalo, NY 0.026 City Alabama -0.044 Non-city
West Virginia 0.025 Non-city Los Angeles, CA -0.044 City
Washington 0.022 Non-city Riverside, CA -0.047 City
Columbus, OH 0.021 City Maryland -0.053 Non-city
Wyoming 0.020 Non-city South Carolina -0.060 Non-city
Cincinnati, OH 0.016 City Texas -0.067 Non-city
New Mexico 0.015 Non-city Arkansas -0.076 Non-city
Rhode Island 0.011 Non-city Louisiana -0.080 Non-city
Michigan 0.008 Non-city Mississippi -0.081 Non-city
Oregon 0.008 Non-city Georgia -0.122 Non-city
Tampa, FL 0.007 City

Note: Average local human capital index and region type. 34 cities are denoted by the name of largest city
with the abbreviation of the state. 47 non-city areas are denoted by the name of the states. Detailed
definitions of occupation index in section 2. Data sources: Current Population Survey MORG and author’s
own calculations.
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Table A4: Counterfactual Results with Perfect Elastic Labour Supply - I
Region Log Population No City No Agg log Land Value No City No Agg
Atlanta, GA 14.55 -0.40 -1.97 19.75 -0.85 -4.19
Baltimore, MD 14.20 -0.36 -1.87 19.19 -0.76 -3.98
Boston, MA 14.57 -0.46 -2.13 19.91 -0.98 -4.54
Buffalo, NY 13.68 -0.28 -1.69 18.36 -0.59 -3.61
Chicago, IL 13.71 -0.29 -1.73 18.42 -0.63 -3.69
Cincinnati, OH 13.98 -0.31 -1.77 18.81 -0.67 -3.77
Cleveland, OH 13.97 -0.32 -1.79 18.82 -0.69 -3.82
Columbus, OH 13.90 -0.30 -1.75 18.69 -0.65 -3.73
Dallas, TX 14.42 -0.35 -1.86 19.48 -0.75 -3.96
Denver, CO 14.47 -0.43 -2.04 19.70 -0.91 -4.35
Detroit, MI 13.75 -0.29 -1.73 18.47 -0.62 -3.68
Greensboro, NC 14.03 -0.29 -1.72 18.86 -0.62 -3.67
Houston, TX 14.52 -0.36 -1.87 19.63 -0.77 -3.98
Indianapolis, IN 14.00 -0.34 -1.82 18.88 -0.72 -3.87
Kansas City, MO 14.20 -0.37 -1.90 19.22 -0.79 -4.05
Los Angeles, CA 14.50 -0.34 -1.84 19.58 -0.73 -3.91
Miami, FL 14.89 -0.41 -1.99 20.22 -0.87 -4.24
Milwaukee, WI 13.65 -0.29 -1.72 18.33 -0.61 -3.65
Minneapolis, MN 13.32 -0.26 -1.67 17.85 -0.56 -3.56
New Orleans, LA 14.52 -0.36 -1.87 19.62 -0.76 -3.97
New York, NY 14.34 -0.39 -1.95 19.44 -0.83 -4.14
Philadelphia, PA 14.28 -0.38 -1.92 19.33 -0.81 -4.08
Pittsburgh, PA 14.06 -0.37 -1.90 19.03 -0.79 -4.05
Portland, OR 14.82 -0.47 -2.15 20.27 -1.00 -4.58
Riverside, CA 14.43 -0.33 -1.81 19.46 -0.71 -3.86
Rochester, NY 14.00 -0.36 -1.86 18.91 -0.76 -3.96
St Louis, MO 14.07 -0.33 -1.81 18.97 -0.71 -3.86
San Diego, CA 14.95 -0.45 -2.10 20.39 -0.96 -4.47
San Francisco, CA 15.20 -0.52 -2.30 20.92 -1.10 -4.90
San Jose, CA 15.20 -0.52 -2.30 20.93 -1.10 -4.90
Seattle, WA 14.95 -0.49 -2.22 20.51 -1.04 -4.72
Tampa, FL 14.89 -0.42 -2.03 20.26 -0.90 -4.32
Virginia Beach, VA 14.06 -0.29 -1.72 18.89 -0.62 -3.66
Washington, DC 14.58 -0.44 -2.07 19.87 -0.93 -4.40
Maine 13.62 0.00 -1.30 17.67 0.00 -2.76
New Hampshire 13.57 0.00 -1.42 17.87 0.00 -3.02
Vermont 12.88 0.00 -1.37 17.07 0.00 -2.92
Massachusetts 14.90 0.00 -1.44 19.31 0.00 -3.07
Rhode Island 13.43 0.00 -1.43 17.85 0.00 -3.04
Connecticut 14.63 0.00 -1.58 19.27 0.00 -3.36
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Table A5: Counterfactual Results with Perfect Elastic Labour Supply - II
Region Log Population No City No Agg log Land Value No City No Agg
New York 14.95 0.00 -1.44 19.32 0.00 -3.06
Pennsylvania 15.16 0.00 -1.37 19.47 0.00 -2.92
Ohio 15.18 0.00 -1.37 19.48 0.00 -2.92
Indiana 14.88 0.00 -1.33 19.12 0.00 -2.84
Illinois 14.79 0.00 -1.37 19.09 0.00 -2.92
Michigan 15.43 0.00 -1.34 19.62 0.00 -2.85
Wisconsin 14.68 0.00 -1.24 18.64 0.00 -2.63
Minnesota 14.06 0.00 -1.11 17.71 0.00 -2.36
Iowa 14.44 0.00 -1.30 18.55 0.00 -2.76
Missouri 14.24 0.00 -1.35 18.53 0.00 -2.87
North Dakota 12.97 0.00 -1.17 16.72 0.00 -2.49
South Dakota 13.06 0.00 -1.25 17.08 0.00 -2.66
Nebraska 13.90 0.00 -1.36 18.17 0.00 -2.90
Kansas 14.02 0.00 -1.42 18.44 0.00 -3.03
Delaware 13.12 0.00 -1.42 17.56 0.00 -3.02
Maryland 13.92 0.00 -1.34 18.23 0.00 -2.86
Virginia 14.61 0.00 -1.39 19.01 0.00 -2.95
West Virginia 13.99 0.00 -1.46 18.47 0.00 -3.12
North Carolina 15.37 0.00 -1.41 19.83 0.00 -3.01
South Carolina 14.76 0.00 -1.40 19.23 0.00 -2.98
Georgia 14.73 0.00 -1.29 19.02 0.00 -2.74
Florida 15.54 0.00 -1.56 20.35 0.00 -3.33
Kentucky 14.69 0.00 -1.42 19.13 0.00 -3.03
Tennessee 15.11 0.00 -1.39 19.52 0.00 -2.96
Alabama 14.86 0.00 -1.43 19.38 0.00 -3.04
Mississippi 14.39 0.00 -1.36 18.80 0.00 -2.90
Arkansas 14.32 0.00 -1.34 18.66 0.00 -2.85
Louisiana 14.53 0.00 -1.39 19.01 0.00 -2.96
Oklahoma 14.61 0.00 -1.47 19.15 0.00 -3.12
Texas 15.73 0.00 -1.40 20.22 0.00 -2.98
Montana 13.27 0.00 -1.40 17.57 0.00 -2.98
Idaho 13.57 0.00 -1.35 17.83 0.00 -2.88
Wyoming 12.72 0.00 -1.37 16.98 0.00 -2.92
Colorado 14.11 0.00 -1.49 18.60 0.00 -3.17
New Mexico 13.92 0.00 -1.48 18.48 0.00 -3.16
Arizona 14.89 0.00 -1.50 19.52 0.00 -3.19
Utah 14.09 0.00 -1.37 18.39 0.00 -2.92
Nevada 13.92 0.00 -1.36 18.25 0.00 -2.89
Washington 14.49 0.00 -1.50 19.07 0.00 -3.18
Oregon 13.94 0.00 -1.48 18.49 0.00 -3.14
California 15.58 0.00 -1.47 20.19 0.00 -3.13
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(a) Baseline Land Value

(b) Counterfactual, no cities

(c) Counterfactual, no agglomeration

Figure A1: Average Land Value and Counterfactuals with Elastic Labour Supply

37



(a) Baseline Population

(b) Counterfactual, no cities

(c) Counterfactual, no agglomeration

Figure A2: Average Population and Counterfactuals with Elastic Labour Supply
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Table A6: Counterfactual Results with Perfect Inelastic Labour Supply - I
Region Log Population No City No Agg log Land Value No City No Agg
Atlanta, GA 14.55 -0.24 -0.36 19.75 -0.57 -1.46
Baltimore, MD 14.20 -0.20 -0.26 19.19 -0.48 -1.25
Boston, MA 14.57 -0.31 -0.52 19.91 -0.70 -1.81
Buffalo, NY 13.68 -0.12 -0.09 18.36 -0.30 -0.88
Chicago, IL 13.71 -0.14 -0.13 18.42 -0.34 -0.96
Cincinnati, OH 13.98 -0.16 -0.16 18.81 -0.38 -1.04
Cleveland, OH 13.97 -0.17 -0.19 18.82 -0.41 -1.09
Columbus, OH 13.90 -0.15 -0.15 18.69 -0.36 -1.01
Dallas, TX 14.42 -0.20 -0.25 19.48 -0.47 -1.24
Denver, CO 14.47 -0.27 -0.44 19.70 -0.63 -1.63
Detroit, MI 13.75 -0.14 -0.12 18.47 -0.34 -0.95
Greensboro, NC 14.03 -0.13 -0.12 18.86 -0.33 -0.95
Houston, TX 14.52 -0.20 -0.26 19.63 -0.48 -1.26
Indianapolis, IN 14.00 -0.18 -0.21 18.88 -0.43 -1.15
Kansas City, MO 14.20 -0.22 -0.30 19.22 -0.51 -1.33
Los Angeles, CA 14.50 -0.19 -0.23 19.58 -0.45 -1.19
Miami, FL 14.89 -0.25 -0.38 20.22 -0.59 -1.51
Milwaukee, WI 13.65 -0.13 -0.11 18.33 -0.33 -0.93
Minneapolis, MN 13.32 -0.11 -0.07 17.85 -0.28 -0.84
New Orleans, LA 14.52 -0.20 -0.26 19.62 -0.48 -1.25
New York, NY 14.34 -0.24 -0.34 19.44 -0.55 -1.42
Philadelphia, PA 14.28 -0.22 -0.31 19.33 -0.52 -1.36
Pittsburgh, PA 14.06 -0.22 -0.30 19.03 -0.51 -1.33
Portland, OR 14.82 -0.31 -0.55 20.27 -0.71 -1.86
Riverside, CA 14.43 -0.18 -0.21 19.46 -0.42 -1.13
Rochester, NY 14.00 -0.20 -0.26 18.91 -0.47 -1.24
St Louis, MO 14.07 -0.18 -0.21 18.97 -0.42 -1.14
San Diego, CA 14.95 -0.29 -0.49 20.39 -0.67 -1.74
San Francisco, CA 15.20 -0.36 -0.70 20.92 -0.82 -2.18
San Jose, CA 15.20 -0.36 -0.70 20.93 -0.82 -2.18
Seattle, WA 14.95 -0.34 -0.61 20.51 -0.76 -2.00
Tampa, FL 14.89 -0.27 -0.42 20.26 -0.62 -1.60
Virginia Beach, VA 14.06 -0.13 -0.12 18.89 -0.33 -0.94
Washington, DC 14.58 -0.28 -0.46 19.87 -0.65 -1.67
Maine 13.62 0.16 0.31 17.67 0.28 -0.04
New Hampshire 13.57 0.16 0.19 17.87 0.28 -0.30
Vermont 12.88 0.16 0.23 17.07 0.28 -0.20
Massachusetts 14.90 0.16 0.16 19.31 0.28 -0.35
Rhode Island 13.43 0.16 0.18 17.85 0.28 -0.32
Connecticut 14.63 0.16 0.03 19.27 0.28 -0.64
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Table A7: Counterfactual Results with Perfect Inelastic Labour Supply - II
Region Log Population No City No Agg log Land Value No City No Agg
New York 14.95 0.16 0.17 19.32 0.28 -0.33
Pennsylvania 15.16 0.16 0.23 19.47 0.28 -0.20
Ohio 15.18 0.16 0.24 19.48 0.28 -0.19
Indiana 14.88 0.16 0.27 19.12 0.28 -0.11
Illinois 14.79 0.16 0.23 19.09 0.28 -0.20
Michigan 15.43 0.16 0.27 19.62 0.28 -0.13
Wisconsin 14.68 0.16 0.37 18.64 0.28 0.09
Minnesota 14.06 0.16 0.50 17.71 0.28 0.36
Iowa 14.44 0.16 0.31 18.55 0.28 -0.04
Missouri 14.24 0.16 0.26 18.53 0.28 -0.15
North Dakota 12.97 0.16 0.44 16.72 0.28 0.23
South Dakota 13.06 0.16 0.36 17.08 0.28 0.07
Nebraska 13.90 0.16 0.24 18.17 0.28 -0.18
Kansas 14.02 0.16 0.18 18.44 0.28 -0.31
Delaware 13.12 0.16 0.19 17.56 0.28 -0.30
Maryland 13.92 0.16 0.26 18.23 0.28 -0.14
Virginia 14.61 0.16 0.22 19.01 0.28 -0.23
West Virginia 13.99 0.16 0.14 18.47 0.28 -0.39
North Carolina 15.37 0.16 0.19 19.83 0.28 -0.29
South Carolina 14.76 0.16 0.21 19.23 0.28 -0.25
Georgia 14.73 0.16 0.32 19.02 0.28 -0.02
Florida 15.54 0.16 0.04 20.35 0.28 -0.61
Kentucky 14.69 0.16 0.18 19.13 0.28 -0.30
Tennessee 15.11 0.16 0.22 19.52 0.28 -0.24
Alabama 14.86 0.16 0.18 19.38 0.28 -0.32
Mississippi 14.39 0.16 0.24 18.80 0.28 -0.18
Arkansas 14.32 0.16 0.27 18.66 0.28 -0.13
Louisiana 14.53 0.16 0.22 19.01 0.28 -0.23
Oklahoma 14.61 0.16 0.14 19.15 0.28 -0.40
Texas 15.73 0.16 0.20 20.22 0.28 -0.26
Montana 13.27 0.16 0.21 17.57 0.28 -0.25
Idaho 13.57 0.16 0.25 17.83 0.28 -0.16
Wyoming 12.72 0.16 0.23 16.98 0.28 -0.20
Colorado 14.11 0.16 0.11 18.60 0.28 -0.45
New Mexico 13.92 0.16 0.12 18.48 0.28 -0.44
Arizona 14.89 0.16 0.11 19.52 0.28 -0.47
Utah 14.09 0.16 0.23 18.39 0.28 -0.20
Nevada 13.92 0.16 0.25 18.25 0.28 -0.17
Washington 14.49 0.16 0.11 19.07 0.28 -0.46
Oregon 13.94 0.16 0.13 18.49 0.28 -0.42
California 15.58 0.16 0.13 20.19 0.28 -0.41
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(a) Baseline Land Value

(b) Counterfactual, no cities

(c) Counterfactual, no agglomeration

Figure A3: Average Land Value and Counterfactuals with Inelastic Labour Supply
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(a) Baseline Population

(b) Counterfactual, no cities

(c) Counterfactual, no agglomeration

Figure A4: Average Population and Counterfactuals with Inelastic Labour Supply
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Table A8: Counterfactual Results with Different Human Capital - I
Region Log Population No City No Agg log Land Value No City No Agg
Atlanta, GA 14.25 15.37 1.12 18.10 21.37 3.26
Baltimore, MD 14.23 15.13 0.91 17.88 20.99 3.11
Boston, MA 13.93 15.38 1.45 17.55 21.59 4.04
Buffalo, NY 13.64 14.67 1.03 17.12 20.17 3.05
Chicago, IL 15.33 14.83 -0.49 18.87 20.53 1.66
Cincinnati, OH 13.95 15.04 1.09 17.41 20.82 3.41
Cleveland, OH 14.19 15.14 0.95 17.77 21.07 3.30
Columbus, OH 13.67 15.00 1.33 17.32 20.78 3.45
Dallas, TX 14.50 15.37 0.87 18.36 21.31 2.95
Denver, CO 13.81 15.16 1.35 17.60 21.07 3.47
Detroit, MI 14.25 14.83 0.58 17.67 20.50 2.83
Greensboro, NC 12.71 15.26 2.56 16.47 21.18 4.71
Houston, TX 14.54 15.40 0.85 18.36 21.31 2.95
Indianapolis, IN 13.59 15.03 1.44 17.00 20.85 3.85
Kansas City, MO 13.80 15.21 1.41 17.38 21.21 3.83
Los Angeles, CA 15.66 15.39 -0.27 19.66 21.27 1.60
Miami, FL 13.31 15.86 2.55 17.08 22.17 5.09
Milwaukee, WI 13.73 14.70 0.97 17.10 20.28 3.18
Minneapolis, MN 14.19 14.49 0.30 17.43 20.02 2.60
New Orleans, LA 13.63 15.38 1.74 17.67 21.27 3.59
New York, NY 16.10 15.28 -0.82 19.82 21.31 1.49
Philadelphia, PA 14.71 15.19 0.48 18.39 21.13 2.73
Pittsburgh, PA 14.39 14.98 0.59 18.07 20.82 2.75
Portland, OR 13.68 15.51 1.83 17.61 21.69 4.08
Riverside, CA 13.77 15.16 1.39 17.57 20.81 3.24
Rochester, NY 13.38 14.88 1.50 16.87 20.60 3.73
St Louis, MO 14.31 15.08 0.77 17.89 20.90 3.01
San Diego, CA 14.05 15.77 1.72 18.06 22.08 4.01
San Francisco, CA 13.65 15.93 2.28 18.19 22.49 4.31
San Jose, CA 13.72 15.88 2.16 17.90 22.38 4.48
Seattle, WA 13.89 15.63 1.74 18.03 21.93 3.90
Tampa, FL 13.77 15.86 2.09 17.62 22.23 4.61
Virginia Beach, VA 13.60 15.12 1.52 17.20 20.87 3.67
Washington, DC 14.46 15.60 1.14 18.55 21.97 3.42
Maine 13.49 13.68 0.18 16.57 18.53 1.96
New Hampshire 13.31 13.71 0.40 16.66 18.65 1.99
Vermont 12.71 12.95 0.23 15.94 17.93 1.99
Massachusetts 14.81 14.69 -0.12 18.23 19.91 1.68
Rhode Island 13.36 13.48 0.12 16.86 18.57 1.70
Connecticut 14.55 14.69 0.14 18.16 20.03 1.86
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Table A9: Counterfactual Results with Different Human Capital - II
Region Log Population No City No Agg log Land Value No City No Agg
New York 14.89 16.23 1.34 18.51 21.21 2.69
Pennsylvania 15.10 16.17 1.07 18.56 21.06 2.50
Ohio 15.17 14.85 -0.33 18.66 19.68 1.02
Indiana 14.83 14.55 -0.27 18.13 19.39 1.26
Illinois 14.76 16.29 1.53 18.11 21.24 3.13
Michigan 15.33 15.91 0.58 18.55 20.76 2.21
Wisconsin 14.53 14.81 0.28 17.50 19.46 1.96
Minnesota 14.01 14.84 0.83 16.74 19.04 2.30
Iowa 14.44 14.52 0.08 17.59 19.28 1.69
Missouri 14.08 14.60 0.52 17.51 19.50 1.98
North Dakota 12.94 13.13 0.19 15.65 17.50 1.85
South Dakota 12.98 13.19 0.22 16.01 17.90 1.90
Nebraska 13.81 14.02 0.21 17.02 18.86 1.84
Kansas 13.96 13.75 -0.21 17.54 18.78 1.24
Delaware 12.91 13.33 0.42 16.78 18.14 1.36
Maryland 13.65 14.15 0.51 16.97 19.28 2.31
Virginia 14.47 14.18 -0.29 17.83 19.32 1.50
West Virginia 14.02 13.96 -0.06 17.60 19.02 1.42
North Carolina 15.08 14.06 -1.02 18.47 19.27 0.80
South Carolina 14.53 14.98 0.44 17.91 20.18 2.26
Georgia 14.51 14.77 0.26 17.95 19.75 1.80
Florida 15.04 13.50 -1.54 18.88 18.99 0.11
Kentucky 14.59 14.78 0.19 18.12 19.89 1.77
Tennessee 14.91 15.28 0.38 18.37 20.44 2.07
Alabama 14.73 14.97 0.24 18.35 20.16 1.81
Mississippi 14.26 14.48 0.22 17.59 19.43 1.84
Arkansas 14.17 14.47 0.30 17.47 19.56 2.09
Louisiana 14.42 13.78 -0.65 17.97 18.75 0.78
Oklahoma 14.46 14.74 0.28 18.41 19.74 1.33
Texas 15.43 16.21 0.78 19.07 21.35 2.29
Montana 13.15 13.41 0.26 16.58 18.31 1.74
Idaho 13.29 13.87 0.58 16.81 18.73 1.92
Wyoming 12.61 12.86 0.25 16.08 17.67 1.59
Colorado 13.78 14.02 0.24 17.27 19.16 1.89
New Mexico 13.63 14.11 0.48 17.37 19.05 1.68
Arizona 14.35 15.29 0.94 18.26 20.41 2.16
Utah 13.67 14.47 0.80 17.24 19.41 2.17
Nevada 13.19 14.46 1.27 16.76 19.30 2.55
Washington 14.21 14.01 -0.20 17.84 18.92 1.07
Oregon 13.77 13.32 -0.45 17.48 18.38 0.90
California 15.22 13.37 -1.85 19.08 18.52 -0.56
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(a) Model Land Value in 1979

(b) Model Land Value in 2015

(c) Land Value Change 1979-2015

Figure A5: Average Land Value
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(a) Model Population 1979

(b) Model Population 2015

(c) Population Change 1979-2015

Figure A6: Average Population and Counterfactuals with Elastic Labour Supply
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