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1 Introduction

Labor productivity depends crucially on the proper sorting of worker types into job types,

a process that is hindered by search frictions. If all unemployed workers and jobs were

alike, it would be hard to imagine why it takes workers months to find a suitable job.

But also if workers and jobs were heterogeneous but search frictions were absent, the loss

in output due to mismatch would be irrelevant because all workers would be matched

to their optimal job types. This paper explicitly models this interaction between search

frictions and heterogeneity and estimates the output loss due to search frictions. This

loss is then decomposed in its three components: (i) unemployment, (ii) resources spent

on recruitment activities and (iii) mismatch. We also estimate the output loss that can

be attributed to the inability of employers to commit to future wage payments. Only this

loss can potentially be reduced by policy intervention.

The starting point of this paper is the framework of Gautier, Teulings and Van Vuuren

(2010) who analyze a class of search models with on-the-job (OJS) search and worker and

job heterogeneity where the productivity of a match depends on the degree of mismatch.

Their production function can be interpreted as a second-order Taylor approximation

of a more general specification of the production technology. Within this framework,

various wage mechanisms can be analyzed such as wage posting with full commitment, as

in Burdett and Mortensen (1998) and Bontemps, van den Berg, and Robin (2000), and

wage mechanisms without commitment, as in Coles (2001) and Shimer (2006). The key

difference between wage setting with and without commitment is that in the former case,

firms pay both hiring and no-quit premiums, whereas in the latter case, firms pay only

no-quit premiums. Our model is related to hedonic pricing/assignment/sorting models

in which worker types are imperfect substitutes —in the spirit of Rosen (1974), Sattinger

(1975) and Teulings (1995, 2005). Intuitively, the less substitutable worker types are,

the larger will be the productivity loss due to mismatch. We use a relation between

Katz and Murphy’s (1992) elasticity of complementarity between high- and low-skilled

workers and the curvature of the production function. This curvature determines how

sensitive output is to the degree of mismatch. In a Walrasian equilibrium, the above
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models generate a perfect sorting of high-skilled workers at complex jobs. With search

frictions, this perfect correlation breaks down. Within the class of sorting models with

search frictions, a distinction can be made between hierarchical models, like Shimer and

Smith (2000), and circle models, like Marimon and Zillibotti (1999). Since circle models

are more easy to handle analytically than hierarchical models, we apply a circle model in

our theoretical analysis.1

We show that the equilibrium depends on just four parameters: (i) the value of non-

market time, (ii) the relative effi ciency of on- versus off-the-job search, (iii) the curvature

of the production function (i.e. how fast output falls with the degree of mismatch), and

(iv) a composite parameter that measures the amount of search frictions. The relevance

of our model depends on how well it can match the empirical values for these parameters.

The main hurdle is to obtain estimates for wage dispersion and the output loss due to

mismatch. We follow Gautier and Teulings (2006) by using data on wages and on worker

and job characteristics to construct an empirical measure for mismatch. We also offer a

new simple statistic for wage dispersion due to search frictions, namely the intercept of a

simple quadratic wage regression with appropriately normalized measures for worker and

job characteristics (this measures the difference between the expected maximum and the

average wage). The simplicity of this measure makes it easily applicable. Since observed

mismatch can be either real or due to measurement error, it is important to correct for

this. We show how to do that. Given wage dispersion and mismatch, our model implies a

value for the unemployment rate. We find values that are close to the empirical values of

about 5%. Hence, our model can jointly explain the observed wage dispersion for workers

with equal skill and unemployment.

We use the model to calculate the total output loss due to search frictions, which

we estimate to be between 9 and 16% of the total value added of labour, depending on

whether firms can or cannot commit to paying hiring premiums. Unemployment accounts

1We can still match moments generated by a hierarchical process because analytical conclusions from

a circle model translate into a hierarchical setting because the former can be viewed of as a second order

Taylor approximation of the latter, see Gautier, Teulings, and Van Vuuren (2005). The intuition is that

in hierarchical models, the output and wage loss due to mismatch also depends on the expected distance

to one’s optimal job type.
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for less than 30% of this loss. If firms cannot commit to wages, their quasi-rents are

higher than in the social optimum, due to a business-stealing externality. As a result of

free entry, these quasi-rents are all spent on (excess) vacancy creation. The estimated

output loss due to this business-stealing externality is 5.5% of the total value added of

labour. This externality can potentially be reduced by policies that shift rents from the

firms to the workers.2

Most of the literature on sorting with frictions considers global absolute advantages of

high-skilled workers. Atakan (2006) and Eeckhout and Kircher (2009) consider a simplified

version of Shimer and Smith (2000). Similar to our model, wages are highest at the

optimal assignment and they are lower at both less and more complex jobs. Their model

is however less suitable to bring to the data. Hagedorn, Law and Manovskii (2012) show

how both the Shimer and Smith (2000) model and our model are non-parametrically

identified from individual wage data from firm-worker data sets. The idea is that wages

are informative about the ranks of worker types within each firm. Bagger and Lentz

(2012) consider a sorting model where workers search most intensively for the jobs where

they earn the highest wages. Lise and Robin (2013) consider a sorting model with on-the-

job search that focuses on the macro dynamics in the presence of aggregate shocks. Lise,

Meghir and Robin (2012), Lopes de Melo (2008) and Bartolucci and Devicienti (2012)

also look at sorting in models with OJS. Their focus is on interpreting the correlations

between worker and firm fixed effects. Under comparative advantage, this issue is not

very meaningful. For example, in Teulings and Gautier (2004), complex jobs do not have

an absolute advantage over simple jobs. They only have a comparative advantage when

occupied by better-skilled workers. Since skilled workers have an absolute advantage,

workers employed in more-complex jobs earn higher wages but the higher wages are not

due to the job, but to the type of workers that occupy these jobs. In this context, one

can just reverse the ordering of job types to change from negative to positive assortative

matching. Without loss of generality, we focus on the latter. An important difference

2In Gautier et al. (2014) we show that if a union sets pay scales ex ante to reduce the business

externality, it will set the lowest wage on the pay scale too high which increases unemployment and may

actually reduce welfare.
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between the empirical sorting models described above and ours is that all jobs in a firm

have the same fixed effect. We do not make that assumption. Cornfeld (2014) considers

a different type of sorting model where skill is defined as the set of tasks that a worker

can perform. Finally, Jovanovic (2013) looks at the effect of misallocation in the labor

market on growth in a model where agents must learn about their abilities and

Concerning wage dispersion, Hornstein et al. (2010) also derive a simple relationship

between the unemployment rate and wage dispersion, the mean-min ratio. We show

that this measure is sensitive to measurement error. They argue that search models

without OJS cannot explain the coexistence of a low unemployment rate and substantial

wage dispersion because the former suggests low frictions, while the latter suggests high

frictions. Gautier and Teulings (2006) made a similar point. This issue can be resolved

by allowing for OJS, since this lowers the reservation wage (consequently wage dispersion

rises and the unemployment rate falls). Allowing for OJS is also quantitatively important,

since Fallick and Fleischman (2004) and Nagypal (2005) show that job-to-job flows are

substantial.

The rest of this paper is organized as follows. Section 2 presents a summary of the

model of Gautier, Teulings and Van Vuuren (2010) as a point of reference for the rest

of the paper. Section 3 discusses how we can identify and measure mismatch and wage

dispersion in the presence of measurement error. Section 4 presents the calibration results,

the estimation of the output loss due to search frictions and the decomposition of this

loss. Finally, Section 5 concludes.

2 The Model

2.1 Assumptions

Production

There is a continuum of worker types, s, and job types, c; s and c are locations on a circle.

Workers can only produce output when matched to a job. The productivity of a match

of worker type s to job type c depends on the shortest distance |x| between s and c along
the circumference of the circle. Y (x) has an interior maximum at x = 0 and is symmetric
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around this maximum Y (0) (normalized to unity). Finally, Y (x) is twice differentiable

and strictly concave. We consider the simplest functional form that meets these criteria:

Y (x) = 1− 1

2
γx2. (1)

We call x the mismatch indicator. The parameter γ determines the substitutability of

worker types: the lower γ, the more easily worker types can be substituted. Y (x) can be

interpreted as a second-order Taylor approximation around the optimal assignment of a

more general production technology. Since the first derivative of a continuous production

function equals zero in the optimal assignment, Y ′ (0) = 0, the first-order term drops out.

We are interested in equilibria where unemployed job seekers do not accept all job offers,

which imposes a minimum constraint on γ.3

Labor supply and the value of non-market time

Labor supply per s-type is uniformly distributed over the circumference of the circle.

Total labor supply in period t equals L(t). We normalize the labor force at t = 0 to

one. Unemployed workers receive the value of non-market time B. Employed workers

supply a fixed amount of labor (normalized to one), and their payoff is equal to the wage

they receive. Workers live forever. They maximize the discounted value of their expected

lifetime payoffs.

Golden-growth path

We study the economy while it is on a golden-growth path, where the discount rate

ρ > 0 is equal to the growth rate of the labor force. Hence, the size of the labor force

is L(t) = exp(ρt). The assumption of a golden-growth path buys us a lot in terms of

transparency and tractability. The golden-growth assumption is a generalisation of the

assumption of zero discounting (zero discounting is the special case of the golden-growth

being equal to zero), an assumption that is often applied in the wage posting literature,

see for example Burdett and Mortensen (1998). New workers enter the labor force as

unemployed. Since labor supply at t = 0 and the productivity in the optimal assignment

Y (0) are normalized to one, the output of this economy would be equal to one in the

3A suffi cient condition for this is that Y (x) < 0 for at least some x.
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absence of search frictions.

Job offer arrival rates and job destruction

Unemployed job seekers receive job offers at a rate λ. Workers receive job offers at a rate

ψλ. The parameter ψ, 0 ≤ ψ ≤ 1, measures the effi ciency of on- relative to off-the-job

search; ψ = 0 is the case without OJS; ψ = 1 is the case where on- and off-the-job search

are equally effi cient. Matches between workers and jobs are destroyed at an exogenous

rate δ > 0.

As is well known in the job search literature, see e.g. Burdett and Mortensen (1998),

the number of parameters can be reduced by introducing a composite parameter4,

κ ≡ 2λ

ρ+ δ
.

Hence, we can ignore the separate parameters ρ, δ, and λ, and focus on the composite

parameter κ instead.

Vacancy creation and contact technology

For our empirical analysis, we can ignore the process of vacancy creation and the job offer

arrival technology that underlies the value of κ. However, when analyzing the output loss

due to search frictions and the constrained effi ciency of the equilibrium, we have to be

explicit about vacancy creation and the contact technology. We assume that there is free

entry of vacancies for all c-types. The cost of maintaining a vacancy is equal to K per

period. After a vacancy is filled, the firm’s only cost is the worker’s wage. The supply of

vacancies is determined by a zero profit condition. Vacancies are uniformly distributed

over the circumference of the circle. When a worker leaves a job, this job disappears.

Let u be the unemployment rate. Due to the normalization of labor supply to one,

u is equal to the number of unemployed. Then, the effective number of job seekers is

equal to the number of unemployed plus the number of employed weighted by the relative

effi ciency of on-the-job search, u+ ψ (1− u). The job-offer-arrival rate λ is a function of

4It is convenient to add a factor 2 to the definition of κ to account for the fact that this model is

symmetric around the optimal allocation x = 0. Hence, job offers with positive and negative values of x

are equivalent.
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the effective supply of job seekers and the number of vacancies, v:

λ = λ0 [u+ ψ (1− u)]−β vα, (2)

where 0 ≤ (α, β) ≤ 1. This specification embodies two important special cases: (i) for

ψ = 0 and β = α, 0 < α < 1, λ = λ0 (u/v)−α: the classical Pissarides constant-returns-

to-scale matching function; (ii) for α = 1, β = 0: the quadratic contact technology. Note

that for ψ = 1, the value of β is irrelevant. Hence, the case α = 1, ψ = 1 is equivalent to

the quadratic contact technology in this setting. Finally, note that for our purposes, we

do not need to know K because any decrease in K can be captured by a corresponding

increase in κ.5 6

Wage setting

Wages, denoted by W (x), are set unilaterally by the firm, conditional on the mismatch

indicator x in the current job. We analyze wage setting under two different assumptions.

Under the first assumption, firms can commit to a future wage payment contingent on x.

Then, firms pay both no-quit and hiring premiums. That is, they account for the positive

effect of a higher wage offer on reduced quitting and increased hiring as in Burdett and

Mortensen (1988). Under the second assumption, firms are unable to commit to future

wage payments. In this case, hiring premiums are non-credible because immediately after

the worker has accepted the job, the firm has no incentive to continue paying a hiring

premium, since the worker cannot return to her previous job. Workers anticipate this,

and will therefore not respond to this premium in the first place, which means that firms

will not offer it. No-quit premiums are credible even without commitment because it is

in the firm’s interest to pay them as soon as the worker has accepted the job, for if the

firm does not pay them the worker will quit as soon as a better outside offer arrives.
5Shifting K to 2K so that v shifts to v/2 together with shifting λ0 to 2αλ−α0 does not effect the

equilibrium.
6The number of free parameters can be reduced even further. If we replace γ by ζ ≡ κ−2γ, κ can be

normalized to one. When we simultaneously increase κ to 2κ and γ to 4γ, this is equivalent to increasing

simultaneously the job search effi ciency and the cost of a bad match. As a result, the upper bound x̄

would shrink to 1
2 x̄, but for the rest, everything would remain the same. The composite parameter ζ

can be interpreted as a summary statistic for search frictions. Details of this transformation are in Web

Appendix C.4 In our empirical application, we need a particular normalization for x and, so we do not

apply the final normalization here.
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Since the equilibrium of this economy and its comparative statics are analyzed exten-

sively in Gautier, Teulings, and Van Vuuren (2010), we will only provide a short summary

of the main results that are needed for the empirical implementation, below.

2.2 Characterization of the equilibrium

The equilibrium of this economy is characterized by a wage function W (x) and an upper

bound x for the absolute value of the mismatch indicator |x|. Job offers with a higher value
of x will not be accepted. Since the model is symmetric around x = 0, W (|x|) = W (x).

For sake of notational convenience, we focus on the case x ≥ 0. Wages are decreasing

in the mismatch indicator x: the lower the mismatch, the higher the wage rate paid by

firms.7 The upper bound x implies a value for u (for a derivation see Web Appendix C.1)

u =
1

1 + κx
.

Note that the model is very similar to the stochastic job search model of Pissarides (2000)

extended with on-the-job search and the constraint that the derivative of Y (x) is zero in

the optimal assignment, x = 0.8 A worker accepts any job offer with a wage above his

current wage and consequently with a mismatch indicator smaller than in his current job.

Unemployed workers accept only job offers with x < x.

Bellman equations under the Golden Growth assumption

Due to the golden-growth assumption, asset values for job seekers and employed workers

take a simple form that can be easily interpreted. Let V U and V E be the asset values of an

unemployed and an employed worker at her marginal job type (with mismatch indicator

x) respectively and let ExY and ExW denote the expected output and wage respectively

(the expectation being taken over the mismatch indicator x among employed workers).

7See Gautier et al. (2010) for a proof. The logic is the same as why bid functions in auction theory

are increasing in valuations.
8The only difference is that under free entry the composition of vacancies adjusts to the composition

of the unemployment.
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Then

ρV U = uB + (1− u)ExW, (3)

ρV E =
uW (x) + ψ (1− u)ExW

u+ ψ (1− u)
,

vK = (1− u) (ExY − ExW ) .

The derivation of these Bellman equations can be found in Web Appendix C.2. The

values of unemployment and employment are a weighted average of the expected payoffs

in the states of employment and unemployment. For the value of unemployment, the

expected payoffs are weighted by their share in the total population. The total expected

cost of vacancy creation are equal to expected profits, which in turn are equal to expected

productivity minus expected wages times employment. The Bellman equations take this

simple form due to the Golden Growth assumption that the growth rate of the workforce

is equal to the discount rate.

The output loss due to search frictions

The output loss due to search frictions can be defined as,

X ≡ (1− u) (1− ExY ) + u (1−B) + vK. (4)

The output loss is made up of the three components, each of them reflected by a term

in equation (4). The loss due to: (i) mismatch, (ii) unemployment, and (iii) the cost of

vacancy creation and recruitment. The loss due to mismatch is equal to the employment

rate 1−u times the difference between productivity in the optimal assignment, Y (0) = 1,

and the expected productivity in the actual assignment, ExY . The loss due to unemploy-

ment is equal to the unemployment rate u times the difference between the productivity

in the optimal assignment and the value of non-market time 1−B. The cost of vacancies
is equal to the vacancy rate v times the cost of a vacancy K.

Two components of this output loss are hard to measure, namely the cost of vacancies

vK and the productivity loss due to mismatch ExY . However, under free entry, all

profits are spent on vacancy creation so we can substitute equation (4) in. After some

rearrangement, we obtain

X = u (1−B) + (1− u) (1− ExW ) = 1− ρV U . (5)
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The simple relation X = 1 − ρV U can be understood easily. Without search frictions,

workers would be costlessly assigned to their optimal assignment where they earn a wage

equal to one and there would be no vacancy cost. Equations (4) and (5) allow us to

estimate the output loss due to search frictions and decompose this loss into its three

components.

Wage formation

The definition of x as the upper bound of the mismatch indicator implies that for this

level of x, wages are equal to output

Ŵ (x) = Ŷ (x) = 1− 1

2
γx2. (6)

At the marginal job type, all the surplus should go to the worker. If not, the firms would

expand their matching set. On the worker side, the definition of x being the upper bound

of x implies that an unemployed worker is indifferent between accepting this job or staying

unemployed. Hence, V E = V U . Substituting equation (3) in this condition yields

Ŵ (x) = [u+ ψ (1− u)]B + (1− [u+ ψ (1− u)])ExW. (7)

Since ExW > B, Ŵ (x) ≥ B: the lowest wage is greater or equal to the value of leisure.

When ψ < 1, a job seeker reduces his chances of finding an even better job by accepting

a job. The excess of the marginal wage offer relative to the value of leisure compensates

for this loss in the option value of finding a better job. Only when on- and off-the-job

search are equally effi cient, ψ = 1, equation (7) simplifies to Ŵ (x) = B.

Next, consider the wage for better matches, 0 ≤ x < x We have two cases, one

where firms can commit on paying hiring premiums and one where firms cannot; for a full

derivation, we refer to Gautier et al. (2010) and web Appendix C.4.

When firms can commit on future wage payments, the optimal wage policy of the firm

maximizes the expected value of a vacancy. Even though firms have all the bargaining

power, they pay positive wages in order to (i) stimulate new workers to come and (ii)

prevent existing workers from quitting. When firms cannot commit on future wage pay-

ments, hiring premiums are non-credible since firms would stop paying them as soon as

the worker has accepted the job. Hence, firms only pay no quit premia.
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Figure 1: Productivity Ŷ (z) and the shape of Ŵ (z) in different regimes, B = 0.4, ψ = 0.54,

γ = 1.8, κ is chosen such that u = 5%

Figure 1 depicts Ŷ (x) and Ŵ (x) for both cases with and without commitment. We

use the benchmark values for B,ψ, κ and γ which will be motivated in Section 3.4 below.

Contrary to Ŷ (x), Ŵ (x) is non-differentiable at x = 0. This is due to the hiring and no-

quit premiums that firms pay. Since the density of employment is highest for low values

of |x|, the elasticity of labor supply is high for these types of jobs. A slight variation in
wages has large effects both on the probability that workers accept an outside job offer

and on the number of workers who are prepared to accept the wage offer (the latter being

relevant in the case with commitment only). Hence, firms will bid up wages aggressively

for those types of jobs. Figure 1 shows that the wage in the optimal assignment is higher

when firms can commit than when they cannot, since the ability to commit increases

competition between firms for workers. Figure 1 also reveals that for x = 0 the slope

of the wage function is smaller (in absolute value) for the case with commitment than

without commitment.

The dashed line is the wage function that would apply under Nash bargaining without

OJS which underlies the analysis in Gautier and Teulings (2006). This wage function does

not feature the non-differentiability at x = 0. It is just a simple parabola. In this paper

we extend the methodology applied in Gautier and Teulings (2006) for estimating search

frictions to the more complex shape of the wage function for the case with OJS. Note
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that without OJS, we have to assume Nash bargaining, since wage setting by the firm, as

is assumed here, would lead to the Diamond paradox of all wage offers being equal to the

value of leisure and the full surplus going to the firm. With OJS, competition for workers

between firms provides workers with market power (especially for x close to 0) even when

they have no bargaining power at all.

The distribution of x among employed workers

The distribution of x among employed workers, Ĝ (x), is given by,

Ĝ (x) = 1− x− x
(1 + ψκx)x

. (8)

See web Appendix C.1 for a derivation. Figure 2 depicts this distribution function and

the density function that goes with it. The vertical line gives the upper support, x. The

main message from Figure 2 is that the distribution of x has a large probability mass

close to zero (the optimal assignment) and a long right tail of bad matches. The median

value of κx is equal to (1 − u)/(1 + u) < 1, which is far smaller than the upper support

κx = (1 − u)/u for reasonable values of u. In fact, 80% of the workers has x < 5. The

reason for this pattern is that workers who are matched badly quit their jobs fast so

their density is low. The reverse holds for good matches, so their density is high. The

skewness of the distribution of the mismatch parameter has profound consequences for

the difference in wage dispersion between the commitment and no commitment cases.

Equilibrium

The equilibrium can be summarized by three relations as a function of the model’s

four parameters B,ψ, κ and γ

Ŵ (0)− ExW = W̃ (B,ψ, γ, κ) , (9)

Ŷ (0)− ExY = Ỹ (B,ψ, γ, κ) =
1

2
γVar [x] ,

u = u (B,ψ, γ, κ) .

For all three relations there are two versions, one for the case with commitment and

one for the case without. The analytical expressions for these functions are presented

in Web appendices, C.5, C.1 and C.4. Ŵ (0)−ExW , the max-mean wage differential,
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Figure 2: The distribution (solid) and density function (dashed) of x conditional on

employment, parameters same as in Figure 1

can be interpreted as a measure of wage dispersion or the wage loss due to mismatch.

For the relevant range of κ, the partial derivatives of W̃ (B,ψ, γ, κ), Ỹ (B,ψ, γ, κ) and

u (B,ψ, γ, κ) with respect to κ are negative. Other things equal, an increase in search

frictions (a lower value of κ) leads to more wage dispersion, more output loss due to

mismatch, and more unemployment. These relations lay the foundations for our empirical

inference.

The max-min wage differential is larger in the case with commitment because the

maximum is higher, see Figure 1, other statistics of wage dispersion (based on the lowest

wage) may lead to the opposite conclusion, since most of the probability mass of em-

ployment is close to the optimal assignment. In that region, the wage function W (x) is

steeper in the case without commitment, leading to larger wage differentials.9

Constrained effi ciency

Gautier, Teulings, and Van Vuuren (2010) show that for the special case, ψ = 1 (on-

and off-the-job search equally effi cient) and a quadratic job search technology, α = 1, com-

9This is also the reason that the min-mean wage differential used in Hornstein et.al. (2010) is more

sensitive to small variations in the models parameters and to measurement error in the minimum. Since

our approach uses the max-mean wage differential, it is less sensitive to this problem.

13



mitment yields constrained effi ciency. By the zero profit condition, firms create vacancies

till the point that the net present value of expected quasi rents (1− u) (ExY − ExW ) is

equal to the cost of a vacancy. Since non-commitment generates higher quasi rents for

firms than commitment, non-commitment leads to excess vacancy creation. Cai et.al.

(2014) show numerically that the effi ciency result for the case of commitment extends to

lower values of ψ, 0.25 < ψ < 1.10

3 Estimation

3.1 Measuring mismatch

Our basic strategy for empirical inference is the same as in Gautier and Teulings (2006).

They estimate the output loss due to search frictions for a model without OJS. This

subsection first summarizes their results and then we extend them to the case with OJS.

Gautier, Teulings and Van Vuuren (2005) show that the Taylor approximations of the

search equilibrium in a hierarchical model without OJS correspond one-to-one to the

equilibrium in a circle model. We apply the same analogy here. In this analogy, it makes

sense to talk about a worker’s type s as an index of her skill and about the job’s type c as

an index of its complexity. The idea is to establish empirical counterparts for these skill and

complexity indices and then calculate the implied mismatch indicator as the difference

between both indicators: x ≡ s − c. Skilled workers are assumed to have an absolute

advantage in any job type and have a comparative advantage in complex jobs. Hence, in a

Walrasian equilibrium, better-skilled workers earn higher wages. Comparative advantage

as defined here requires log supermodularity in the production function: better skilled

workers are relatively more productive in more complex jobs. Therefore, skilled workers

sort into complex jobs and hence wages are an increasing function of job complexity. Those

features do not necessarily carry over to a world with search frictions (see Shimer and

Smith, 2000), but under a log supermodular production function they do in expectation.11

10For α < 1, the standard congestion externalities apply and in that case the commitment case does

not generate the socially effi cient outcome.
11See Gautier and Teulings (2006) footnote 7 for a more detailed analysis of this issue. See also

Eeckhout and Kircher (2011).
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We use these positive correlations between the worker skill and job-complexity indices

on the one hand, and wages, on the other hand to construct indices of worker’s skill

and job’s complexity. For this purpose, we run two regressions: one of demeaned log

wages on worker characteristics, like gender, race, years of education and experience, and

one on job characteristics, like occupation and industry dummies. Details are in Web

appendix C.7. The estimated parameter vector can then be used to construct indices

for the observed worker and job characteristics ŝ and ĉ. Both indices ŝ and ĉ have zero

mean (since wages are demeaned) and are uncorrelated to their unobserved components

εs and εc, respectively. Thus, the skill measure is the predicted log wage conditional on

standard worker characteristics and the job complexity level is the predicted log wage

conditional on job characteristics. Having estimated both indices, the proxy for x is

constructed as x̂ ≡ ŝ − ĉ. This way of constructing the skill index ŝ implies that the

choice of dimension of s is such that the Mincerian rate of return on the skill index is

equal to one: dEx [lnW ] /ds = dEx [lnW ] /dŝ = 1. Moreover, this specification implies

that lnW is linear in ŝ and ĉ. A similar implication holds for the complexity index ĉ.

These characteristics are just convenient normalizations of the units of measurements that

imply no loss of generality.

Gautier and Teulings (2006) run wage regressions for six countries where they enter

both ŝ and ĉ simultaneously, joint with their second order terms

lnW = ω0 + ωsŝ+ ωcĉ+ ωssŝ
2 + ωscŝĉ+ ωccĉ

2 + ε.

Since neither E[ŝ2], nor E[ŝĉ], nor E[ĉ2] are equal to zero, an intercept is added to the

regression. This intercept will play a crucial role. For all six countries βss < 0, βsc > 0,

and βcc < 0, and roughly βsc = −2βss = −2βcc. This finding is consistent with the idea

that the final three terms measure the effect of the mismatch indicator x̂2 = (ŝ− ĉ)2 on
wages. Below we reiterate their result for the United States, which are taken from the
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March supplements of the CPS 1989-1992 (t-values in brackets).

lnW = 0.013
(8.9)

+ 0.61ŝ
(182.4)

+ 0.66ĉ
(207.7)

− 0.17ŝ2
(21.2)

− 0.17ĉ2
(21.6)

+ 0.43ŝĉ
(36.6)

,

lnW = 0.024
(14.7)

+ 0.61ŝ
(182.2)

+ 0.66ĉ
(207.5)

− 0.20
(35.1)

x̂2, (10)

Var [x̂] = 0.120. (11)

The coeffi cients on ŝ and ĉ are between zero and one and highly significant. Since at

the optimal assignment there is a one-to-one correspondence between s and c, we cannot

conclude much from the first order terms. The one could be a proxy for the measurement

error in the other and the other way around. The second-order terms enter also highly

significantly, with the expected signs. In the second regression we impose the restriction

βsc = −2βss = −2βcc. Although a formal F-test rejects them due to the large number of

observations, these restrictions hold almost perfectly. This applies to all six countries.

Gautier and Teulings (2006) provide two arguments why the second order terms are

likely to capture the effect of search frictions, which we reiterate here shortly. First, when

observed and unobserved worker and job characteristics are distributed jointly normal,

it is impossible for second-order terms to be a proxy for the unobserved component of a

first-order term, because the correlation of a second-order term in ŝ and/or ĉ with the

unobserved skill index is a third moment and third moments of a normal distribution are

equal to zero. Second, the interpretation of these coeffi cients as capturing the concavity of

the wage function implies sign restrictions, which are met for all three coeffi cients for all six

countries. We add one new argument here.12 If the significance of the second-order terms

is indeed driven by the concavity of the wage function in the mismatch indicator, then their

sign would depend on ŝ and ĉ capturing worker and job characteristics respectively. To the

contrary, if both vectors were composed out of mixtures of job and worker characteristics

(e.g. experience and occupation dummies in ŝ and education and industry dummies in ĉ)

then the concavity result should not come out. Equation (12) demonstrates this by putting

education and occupation in ŝ, while equation (13) demonstrates it by putting education

and industry in ŝ (and the remaining variables in ĉ). In both cases, the concavity result

12We thank Jean Marc Robin for the idea of this test.
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disappears

lnW = 0.00
(0.0)

+ 0.52ŝ
(132.6)

+ 0.65ĉ
(175.2)

− 0.01ŝ2
(0.9)

− 0.04ĉ2
(4.1)

+ 0.09ŝĉ
(6.2)

(12)

lnW = 0.00
(0.0)

+ 0.32ŝ
(79.9)

+ 0.81ĉ
(233.2)

− 0.01ŝ2
(4.4)

+ 0.01ĉ2
(1.1)

+ 0.05ŝĉ
(3.5)

(13)

Also note that the constant moves towards zero in that case. Hence, the concavity result

in (10) is not a statistical artifact.

The quadratic terms in equation (10) correspond nicely to the model without OJS,

where the wage function W (x) follows a smooth parabola, see Figure 1. Then, the only

remaining question is to what extent the coeffi cient on x̂2 is affected by measurement

error. Here, we want to apply this methodology to a model with OJS. But then we have

to find a method for fitting a wage function that is not a simple parabola, but a more

complicated function that is non-differentiable at x = 0. This question will be addressed

below.

3.2 Capturing the shape of W (x)

The first step in finding a tractable approach to estimating the function lnW (x) is to

consider a simple Taylor expansion around the optimal assignment, x = 0. In section

4 when we calibrate the model, we will use the exact expressions and test how well the

approximations below perform. Start from the circle model. Then

lnW (x) = ω0 − ω2 |x|+O
(
x2
)
, (14)

where we demean the data on lnW , such that Ex lnW = 0. The wage curves in Figure

1 imply that ω2 > 0. If there were no search frictions, then x = 0 at all job types and

therefore ω0 = 0. By construction, ω0 is approximately equal to our measure of wage

dispersion, the max-mean wage differential.

ω0 = ω2E [|x|] = lnW (0)− Ex lnW & lnW (0)− lnExW & W (0)− ExW. (15)

The first equality follows from taking expectations at the left- and right-hand sides of (14)

and using Ex lnW = 0 (by demeaning). The second equality follows from evaluating (14)

at x = 0. The next approximate equality is due to Jensen’s inequality, lnExW &Ex lnW .
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For the third step, note that for small search frictions —and accordingly, small wage

differentials—ExW . W (0) . 1, the approximation lnW . W − 1 applies. Finally, since

W (0) ' 1, W (0)−ExW ' [W (0)− ExW ] /W (0). Hence, ω0 is a convenient statistic for

the relative wage loss due to search frictions.

In practice we observe x with a fair amount of measurement error. What are the

implications of this? Let εx ≡ εc − εs be the measurement error in the observed signal x̂,

x̂ = x+ εx, (16)

with Cov[x, εx] = 0.13 Hence, Var[x̂] =Var[x] + σ2ε, where σ
2
ε ≡Var[εx]. Measurement

error is particularly relevant when estimating the effect of mismatch, since the observed

mismatch x̂ can either be due to true mismatch or to measurement error. In a perfect

Walrasian world, there is no mismatch, since s = c for each job. Hence, x = 0. A careless

researcher would ’observe’mismatch since the observed skill and complexity indexes are

not equal, ŝ 6= ĉ, due to unobserved heterogeneity in s and c. Hence, the ’observed’

mismatch x̂ is equal to the measurement error: x̂ = ŝ − ĉ = εx since x = 0 for each

job. Failing to correct for the impact of measurement error will therefore overestimate

the importance of mismatch.

Define the signal-to-noise ratio R ≡Var[x] /Var[x̂]. If the approximation of lnW (x)

in equation (14) would be exact, estimating this equation with OLS (replacing |x| by |x̂|)
would yield a downwardly-biased estimate of ω2 for two reasons. First, attenuation bias

due to measurement error biases the coeffi cient on the explanatory variables towards zero;

and second, there is the strong convexity at zero. Due to this convexity,

E [|x| |x̂] ≥ |x̂| .

The closer x̂ is to zero, the stronger this inequality. This is documented in Figure 3, where

we present three functions, |x̂|, E[|x| |x̂], and the least-squares estimation of E[|x| |x̂] =

13By construction, Cov[εs, ŝ] = Cov[εc, ĉ] = 0. Hence, εs and εc measure unobserved heterogeneity

in s and c. This does not apply to the mismatch indicator x̂, where Cov[εx, x̂] > 0. This can be

seen most easily by considering the limiting case of zero search frictions (the Walrasian equilibrium),

where Var[x] = 0 and Var[x̂] =Var[εx] ≥ 0, since s = c and hence εx = x̂. For small search frictions,

Var[x] �Var[εx], Cov[εx, x] ∼= 0. Hence, εx can be interpreted as pure classical measurement error

in the observed mismatch indicator x̂. The signal-to-noise ratio that we find empirically supports this

interpretation, see Section 4.
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Figure 3: Smoothing of an absolute value function by random mixing for σ2x = σ2ε = 1:

|x| (black thin), E[|x| |x̂] (blue dotted), least- squares estimate (red solid)

β0 + β2x̂
2+ ε, for the case that both the true value x and measurement error εx are

normally distributed —both with variance equal to unity. The least-squares approximation

of E[|x| |x̂] turns out to be extremely precise for the relevant range between plus- and minus

two standard deviations of x̂ ∈ [−2, 2]. This justifies the idea of approximating equation

(14) by a regression model of w with a quadratic term x̂2:

lnW = ω0 − ω2x̂2 + ε, (17)

where ε is a zero mean error term. This is a surprising result: while the wage function

W (x) with OJS is entirely different from the wage function without OJS, a second order

polynomial is again an accurate approximation of the relation between log wages and the

observed proxy for mismatch, x̂ in the presence of measurement error.

The following proposition relates the least-squares estimate ω0 to the underlying co-

effi cient ω0.

Proposition 1 Suppose (i) that the true model is given by

lnW = ω0 − ω2 |x| ,
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where both lnW and x are normalized to have a zero mean, (ii) that we observe only

x̂ = x + εx where both x and εx are distributed normally with Var[x] /Var[x̂] ≡ R, (iii)

that we estimate equation (17) by OLS. Then,

plimω0 =
1

2
Rω0 =

1

2
Rω2E|x|.

Proof : See Appendix A.3.

Hence, when there is no measurement error in the observed signal x̂ (R = 1), the

estimated intercept ω0 is equal to half the true intercept ω0. This underestimation by

a factor two is due to the imperfect approximation of the absolute value function by a

parabola. When on top of this imperfection in the functional form, there is also measure-

ment error in the signal x̂, the underestimation becomes more severe. However, as Figure

3 shows, a parabola provides a very good description for E[|x|] when x is convoluted with
measurement error, in particular when R < 1/2. Hence, using a parabola is an effi cient

way of estimating ω0. Given the measurement error in the data, one cannot do much

better by using alternative estimation methods. The estimate of ω0 is proportional to the

signal-to-noise ratio R. Under the assumption of joint normality of x̂ and εx, Proposition

2 and equation (15) imply that the intercept ω0 underestimates the true magnitude of

wage dispersion by a factor 2/R:

W (0)− ExW
W (0)

∼=
2

R
ω0. (18)

Equation (18) provides a very convenient relation. Twice the intercept of a simple OLS

regression, 2ω0, provides a robust estimate for the magnitude of the wage loss due to search

frictions. The estimation results in equation (10) imply ω0 = 0.024. Hence, the relative

wage loss due to mismatch [W (0)− ExW ] /W (0) is at least 4.8%. This is the limiting

case of R = 1, when there is no measurement error. In the presence of measurement error,

the wage loss due to mismatch is larger.

Since Var[x] = RVar[x̂], the productivity loss due to mismatch follows from

Y (0)− ExY =
1

2
γE[x2] =

1

2
γRVar [x̂] .

Conditional on γ, the variance of the observed mismatch indicator Var[x̂] overestimates the

productivity loss due to mismatch by a factorR, exactly the reverse of the underestimation
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of the expected wage dispersion. The latter is due to the fact that part of the variance of a

noisy mismatch indicator does not reflect true mismatch, but just noise. The elimination

of R from these two expressions yields

[W (0)− ExW ] [Y (0)− ExY ] = W̃ (B,ψ, γ, κ) Ỹ (B,ψ, γ, κ) ∼= γω0Var [x̂] . (19)

Equation (19) is a key equation. It establishes a relation between the four parameters of

the model, B,ψ, κ and γ on the left hand side and the parameter γ and the estimated

statistics ω0 and Var[x̂] on the right hand side. For given γ, the product of wage and

productivity dispersion is not affected by measurement error. More measurement error in

x, increases Var[x̂] by the same factor as it decreases ω0.

3.3 Measuring γ and its role in identification

Teulings (2005) shows that there exists a one-to-one correspondence between the Katz

and Murphy (1992) elasticity of complementarity between low and high skilled workers,

ηlow-high, and the parameter γ.
14 Katz and Murphy estimate this elasticity to be 1.4 for

the period 1963-87: a 1% increase in the ratio between high- and low-skilled workers

yields a 1.4% fall in the relative wages of high-skilled workers. Suppose that the data

are generated by a continuous type model like ours, but that the researcher arbitrarily

divides the workforce into two groups, high and low skilled, where all workers below a

certain threshold value for s are assigned to the low skilled group and all workers above

that threshold are assigned to the high skilled group. When this researcher then tries to

estimate ηlow-high, he will obtain the following result:

γ =
1

Var [lnW ] ηlow-high
∼=

1

0.40× ηlow-high
.

Katz and Murphy (1992)’s benchmark value for ηlow-high of 1.4 yields (using the empirical

value for Var[lnW ] of 0.40) γ = 1.8. Their discussion on pages 71-72 suggests that for the

period 1975-87, choosing ηlow-high = 4, performs better than 1.4. The alternative value for

ηlow-highof 4 yields γ = 0.6. Better substitutability of worker types reduces the output loss

due to mismatch.
14In the web appendix C.6, we show that the units of s (dE[lnW ] /ds = 1) are the same as in Teulings

(2005) so we can transfer his findings to this paper.
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Figure 4 illustrates the situation for both the commitment and non-commitment cases,

using the benchmark values for B, ψ, and γ from the next section. The upward-sloped

curve (red) consists of combinations of wage loss W̃ (B,ψ, γ, κ) and productivity loss

Ỹ (B,ψ, γ, κ) from equation (9). Each point on the curve corresponds to different values

of κ. When there are more search frictions (low κ), there is both more wage dispersion

and more mismatch. The downward-sloped curve (blue) reflects equation (19), using

the values of ω0, and Var[x̂] discussed above. This yields a hyperbolic relation between

W̃ (B,ψ, γ, κ) and Ỹ (B,ψ, γ, κ). Each point on this curve corresponds to a different value

of the signal-to-noise ratio R. In the North-West, R = 1 and W̃ (B,ψ, γ, κ) = 2ω0 = 4.8%.

Note that R is not a completely free parameter because the model restricts the curves

to intersect at values for R ≤ 1. The lower R, the more Var[x̂] overestimates Var[x] and

hence Ỹ (B,ψ, γ, κ), but the more W̃ (B,ψ, γ, κ) is underestimated. The intersection of

both curves determines κ and R.

Wage differentials are generally larger than productivity differentials, which is due to

the fact that the derivative of the production function is zero in the optimum, Y ′ (0) = 0,

while the wage function is non-differentiable at that point. Since x = 0 is the point

with the highest density, this point matters a lot for the relative size of productivity

and wage differentials.15 The ultimate test of the model is to see whether the implied

value of unemployment is realistic. Figure 5 plots the relation between W̃ (B,ψ, γ, κ) and

u (B,ψ, γ, κ). The two points on the curves in Figures 4 and 5 denote the exact solutions,

which will be discussed in Section 4. A higher value of γ shifts the locus of equation (19)

to the North-East in Figure 4. For a given amount of wage dispersion, a higher γ implies

more output loss due to mismatch (1
2
γVar[x̂]). At the intersection with the upward sloped

locus of equation (9), both W̃ (B,ψ, γ, κ) and Ỹ (B,ψ, γ, κ) are higher. Figure 5 shows

that the higher value of W̃ (B,ψ, γ, κ) that corresponds to γ = 1.8, implies a value of the

unemployment rate around 10% (the exact solutions imply a lower u).

15Note that for the model without OJS in Gautier and Teulings (2006), productivity differentials are

always larger than wage differentials.
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Figure 4: Identification, the role of γ (B = 0.4, ψ = 0.54)
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3.4 The values of B and ψ

Hall and Milgrom derive a value for B based on UI benefits of 0.25 and an estimated

Frisch elasticity of labor supply of 1. This implies a value of B = 0.71.16 In our setting,

where we are interested in the mean or median worker, such a high value would have the

unpleasant implication that if nobody would work in the US, per capita output would

only be 27% lower than in case everybody would be at her optimal job. Therefore, we

think it is more reasonable to set B = 0.4 following Shimer (2005). As a robustness check,

we also calibrate our model for B = 0.6.

The value of ψ is identified from the relation between the ratio of the (average)

employment-to-employment hazard rate, fee, and the employment-to-unemployment haz-

ard rate, feu, see Appendix A.2

fee
feu

=
1 + q

q
ln (1 + q)− 1, (20)

q ≡ ψ
1− u (B,ψ, γ, κ)

u (B,ψ, γ, κ)
.

Since q is an increasing function of fee/feu, its inverse exists. Denote this inverse by

Ψ
(
fee/feu

)
. Hence, ψ = u(B,ψ,γ,κ)

1−u(B,ψ,γ,κ)Ψ
(
fee/feu

)
. Identification of the model proceeds along

the same lines as in Figure 4, but now taking B and fee/feu as given instead of B and ψ.

Monthly transition rates from 1967-2010 similar to Shimer (2007) imply that feu =

2.13% per month for the mean worker. The value of fee is 2.7% according to Fallick

and Fleischman (2004), 2.9% according to Nagypal, and 3.3% according to Moscarini and

Vella (2008), applying a correction for missing records in the CPS.17 Hence, for the mean

worker, 2.7
2.13

(= 1.27) ≤ fee/feu ≤ 3.3
2.13

(= 1.55).18

16Hagedorn and Manovskii (2008) and Hall (2009) seek to explain the cyclical behavior of unemploy-

ment, so they use larger values for B. For these studies, the value of non-market time of the marginal

worker is relevant whereas here we are interested in the value of non-market time for the average worker,

which justifies a lower value of B.
17Nagypal’s values come from the SIPP and the CPS. She argues that those estimates are down-

wardly biased because when workers change jobs it is not uncommon for them to experience a short

unemployment spell. In the data, this yields an employment-unemployment transition followed by an

unemployment-employment transition. This bias might be larger than the time aggregation bias in the

unemployment outflow rate.
18We thank Bart Hobijn for sharing his data.
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If we consider the median worker, a lower value for feu applies. This can be seen as

follows. According to the BLS statistics, median tenure is 4.6 years.19 In the absence

of duration dependence and ignoring the flow out of the labor force, the total hazard

out of the current job, fee + feu, is 1.3%.20 The transition rate feu (the equivalent of

δ) is assumed to be constant in our model, while the unconditional transition rate, fee,

exhibits negative duration dependence due to heterogeneity in the match quality x: high

quality matches survive. Negative duration dependence implies that the hazard rate for

low-tenure workers is above 1.3% and the rate for high-tenure workers is below 1.3%.

Since feu is constant, it must be smaller than 1.3%, much lower than the value reported

by Shimer. This implies that the assumption of the absence of duration dependence of feu

is rejected by the data. Apparently, a small group of weakly attached workers frequently

transits between unemployment and employment. In order to capture this feature of

reality, other mechanisms must be introduced (such as learning, see Moscarini (2005);

or random growth, see Buhai and Teulings (2014)). This falls outside the scope of this

paper. Hence, our model is unable to explain this feature of reality. We set fee/feu = 1.75

in our preferred calibration, but we check the robustness of our results for higher values

of fee/feu in Appendix B.

4 Calibration

The methodology applied in the previous section requires two approximations. First, we

approximate lnW (x) by a first order Taylor expansion in Section 3.2, using the absolute

value transformation: −ω2 |x|. Second, we approximate the distribution of x by the

normal distribution, see Proposition 2, while its actual distribution is far from normal,

see Figure 2. In this section, we use the exact expressions to calibrate our model. The

calibration proceeds as follows,

1. We set B = 0.4 and γ = 1.8 (our preferred values, see the discussion in the previous

section).

19www.bls.gov/news.release/pdf/tenure.pdf
20Ignoring flows out of the labor force, the total hazard out of employment can be solved from 1 −

exp [−55 (fee + feu)] = 0.5.
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2. Take starting values for ψ and κ.

3. Var[x] can be calculated directly, see (31) in Web Appendix C.5. The variance of

the measurement error distribution, σ2ε, can be calculated from

σ2ε = Var[x̂]−Var [x] ,

using the empirical value Var[x̂] = 0.12. Note that consistency requires Var[x̂] ≥
Var[x], which is an additional test for the model (i.e. the intersection of the blue and

red curve in Figure 4 occurs before the end point of the blue curve that corresponds

to R = 1 in the north west). This condition turns out to hold in our calibration.

4. The fee/feu ratio in the model follows from (20) while the simulated ω0 is obtained

as follows. First draw values from Ĝ(x), see (8). Next, add measurement error

using the value of σ2ε from step 3 and run regression (17). Compare the simulated

values for fee/feu and ω0 to the empirical values, fee/feu = 1.75 and ω0 = 0.0241.

As long as they do not match, adjust ψ and κ and return to step 2 till convergence

is reached.

This procedure converges fast (also for the alternative calibration in Web Appendix

B).

Table 1 presents the implied values for our key variables.

u(%) ψ W (0)− ExW
x100

ExW/W (x) Y (0)− ExY
x100

R(%)

commitment yes no yes no yes no yes no yes no yes no

4.72 4.48 0.58 0.54 6.04 8.01 1.51 1.44 2.32 2.39 21.5 22.2

Table 1: Calibration results for B = 0.4, fee/feu = 1.75, γ = 1.8

The implied unemployment rate in Table 1 is in the reasonable range for both the

commitment (4.72%) and non-commitment case (4.48%). Hence, the data do not allow

us to discriminate between commitment and non-commitment. On-the-job search is about

half as effi cient as off-the-job search. The mean-min ratio predicted by the model is similar

to the one reported by Hornstein et al. (2010) if they use the 10th percentile as the lowest

26



wage. The signal-noise ratio R may appear low at first sight. However, remember that

R would be 0 in the Walrasian case, see the discussion regarding equation (16). Hence,

there is no natural lower bound for R.

Our results also show that the approximations in Section 3.2 overestimated unemploy-

ment and wage dispersion. For the no commitment case, the approximations suggested

that, W (0)−ExW = 11% and u = 10% while for the commitment case, the approxi-

mations would give W (0)−ExW = 11% and u = 11%. In the simulations where we use

the exact values we get less wage dispersion (W (0)−ExW equals for commitment and no

commitment respectively 6% and 8%) and a lower unemployment rate of 4.5%. The high

values in the approximations were mainly due to the fact that there we assumed that x

followed a normal distribution rather than the actual distribution Ĝ(x) that we use here

(which is far from normal). The linear approximation of the wage function applied in (14)

had little effect.

In Tables 3 and 4 in Appendix B we present the calibration results for 8 other combi-

nations of the parameters B, fee/feu, and γ. The calibration with B = 0.6, γ = 1.8 and

fee/feue = 1.3 gives an implausibly large frictional unemployment rate of 11%. In general,

for B = 0.6, the unemployment rate is a bit higher and for γ = 0.6, it is a bit lower than

for our baseline analysis. ψ can increase to almost 1 if we use B = 0.6, fee/feu = 1.75

and γ = 1.8. For the no commitment case, unemployment varies between 2.8 and 12.7 for

the eight different configurations.

Figure 4 illustrates what happens if we use different parameters in the calibration. For

example, if we calibrate the model with a higher value of B, this makes the theoretical

relationship between wage dispersion and mismatch steeper (the yellow curve). With a

higher B, it is harder to generate wage dispersion. A given level of wage dispersion is

then associated with more frictions and consequently more mismatch. However, at the

new intersection, the corresponding unemployment rate and ψ are no longer consistent

with the empirical value of fee/feu. Therefore, ψ must increase to shift the yellow curve

back and this is depicted by the green dotted curve. Figure 6 gives the corresponding

values of unemployment.
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Figure 6: The effect of B on the estimated value of u
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The effect of B on the estimted value of ψ

4.1 Composition of the output loss and the business-stealing
externality

Table 2 shows for our baseline parameters that if firms can commit to wages, the output

loss, X, due to search frictions is 10.0% while if firms cannot commit, it is 15.5%. A large

share of the output loss in the non-commitment case is due to vacancy creation. This is

due to the fact that we assume free entry, or equivalently, an infinite elasticity of vacancy

creation with respect to profits per worker. In reality, there will be imperfect competition
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and part of the profits will be captured by the owners of the firm.

Commitment yes no

u(1−B) 2.84 2.69

(1− u) [ExY − ExW ] 4.43 10.48

(1− u) [Y (0)− ExY ] 2.21 2.28

X (%) 9.48 15.45

Table 2: Decomposition of output loss due to frictions forB = 0.4, γ = 1.8 and
fee/feu = 1.75

The large value of (1− u) (ExY − ExW ) for the non-commitment case is socially ineffi -

cient because of a business-stealing externality (see Gautier et al. 2010). The idea is that

without commitment, when opening a vacancy, individual firms do not internalize the

future output loss of the firm from which they poach a worker. Although the transitions

of workers to better matches are always effi cient, the expected productivity gains are too

small to justify, from a social point of view, the entry cost of the marginal firm. Tables 5

and 6 in Appendix B present the estimated output loss for the eight different calibrations

and find that X varies between 6.42% (commitment, B = 0.4, γ = 0.6, fee/feu = 1.75)

and 18.78% (non-commitment, B = 0.6, γ = 1.8, fee/feu = 1.3).

Estimating the business-stealing externality

Table 2 is not suitable to estimate the business-stealing effect because it keeps constant

the outcome variable fee/feu, and not the parameter κ. In order to estimate the business-

stealing effect, we use for the commitment case the same parameter values, B = 0.4,

γ = 1.8, and ψ = 0.54 as in the no-commitment case. Under commitment, there is no

excessive vacancy creation (vK reduces to 4.67) and this makes the unemployment rate

slightly higher (5.05%). The output loss due to mismatch under commitment is almost

the same (2.33) as for the original calibration. The total output loss due to search frictions

is now 15.45% for no commitment and 10.03% for commitment. The difference of almost

5.5% points is the welfare loss due to the existence of a business-stealing externality that

arises if firms cannot commit to wages contingent on x. Note that this estimate is based

on the assumption that all excessive rents of the ineffi cient wage mechanism are spent on
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vacancy creation. If the rents end up at the firm owners, the losses will be smaller, since

they will derive utility from this income.

5 Conclusion

Due to frictions, only a subset of the contacts between vacancies and workers results in a

match, and this creates (i) unemployment, (ii) wage dispersion amongst identical workers

and (iii) mismatch. This paper contributes to the literature by measuring these manifes-

tations of search frictions and presenting a model that can jointly explain them (allowing

for measurement error). Our methodology yields a very simple and tractable method

for estimating wage dispersion due to search frictions using a simple OLS regression on

worker and job characteristics. We use the analogy to hedonic pricing models to derive the

curvature of the production function from Katz and Murphy’s estimate of the elasticity

of complementarity between high and low skilled workers. The output loss due to search

frictions only depends on four parameters: the value of non-market time B, the relative

effi ciency of on-the job search, ψ and a composite parameter that captures everything

that affects frictions (the effi ciency of matching, the discount rate, the job destruction

rate, vacancy creation cost and a parameter measuring the cost of mismatch).

Search frictions generate output losses directly due to the suboptimal allocation of

resources, and indirectly, because decentralized wage mechanisms potentially come with

distortions. Allowing for two-sided heterogeneity is extremely important because it is

the interaction between the search frictions, the type distributions and the production

technology that determines how important these frictions are. If workers and firms are

identical, then all contacts result in a match. Under two-sided heterogeneity, the produc-

tion technology matters because it determines how much output is lost due to mismatch.

The more diffi cult it is to substitute between worker types, the greater this output loss.

By combining information on wage dispersion and the substitutability of worker types we

can learn about the actual amount of frictions and the importance of a precise match.

We then use our model to quantify and decompose this total output loss. Traditionally,

most of the macro labor literature has focussed on unemployment, but our results imply
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that mismatch and job creation cost are also important. We find that this total loss is

between 9% and 16%, depending on whether firms can or cannot commit to wages, on the

value of non-market time and on the effi ciency of on—relative to off-the-job search. Gau-

tier and Teulings (2006) did not allow for on-the-job search, and therefore substantially

overestimated the output loss due to frictions.
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A Appendix

A.1 Reducing the number of parameters

Consider the economy described in Section 2.2. Take the expressions for W (x) and x

from Gautier, Teulings, and Van Vuuren (2010) for the no commitment case (equation

20), using Sv = 121 and κ ≡ λ/(ρ+ δ) yields,

W (x) = 1− γ
[

1 + ψκx

(ψκ)2
log

(
1 + ψκx

1 + ψκx

)
− x− x

ψκ
− 1

2
x (x− 2x)

]
.

G(x) is given by

G (x) = 1− x− x
(1 + ψκx)x

. (21)

where x follows from (1).

A.2 fee
feu
ratio

fee = (ρ+ δ)

∫ x
0
ψ (1− u) g (x)xdx

(1− u)
= (ρ+ δ)ψ

(1 + ψx)

ψ2x

∫ ψx

0

x

(1 + x)2
dx

= (ρ+ δ)

[
1 + ψx

ψx
ln (ψx+ 1)− 1

]
.

using feu = ρ+ δ yields equation (20).

A.3 The proof of Proposition 2

Let x ∼ N (0, σ2x) and εx ∼ N (0, σ2ε). x and εx are independent. Let w ≡ lnW−E[lnW ].

The data-generating process for w is,

w = ω0 − ω2|x|
21In their case, the model is even more extended, λ = λ0Sv. We just substituted λ for this combination.
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where ω0 = ω2E|x|.
The regression we run is

w = ω̄0 + ω̄2(x+ εx)
2 + ν.

The claim is

ω̄0 →
1

2
Rω2E|x|,

where R = Var[x]
Var[x]+Var[εx]

.

Claim 1: E|x| =
√

2
π
Var[x] and ω0 = ω2

√
2
π
Var[x].

Proof.
E|x| = Var[x]

∫ ∞
0

x
2√
2π
e−

x2

2 dx

Let s = x2/2, then we have x =
√

2x and dx = 1√
2s
ds.

E|x| = Var[x]

√
2

π

∫ ∞
0

e−sds

= Var[x]

√
2

π

Note we have ω0 = ω2E|x|.
Claim 2: ω̄0 = −ω̄2(Var[x]+Var[εx])

Proof.

0 = w = ω̄0 + ω̄2E(x+ εx)
2

= ω̄0 + ω̄2(Var[x] +Var[εx])

Note ω̄2 → cov[(x+εx)2,ω0−ω2|x|]
var[(x+εx)2]

.

Claim 3: Var[(x+ εx)
2] = 2(Var[x]+Var[εx])2.

Proof. Note that Ex4 = 3Var[x]2, and x is independent of εx.

Claim 4: cov[(x+ εx)
2, ω0 − ω2|x|] = −Var[x]3/2.

√
2
π
ω2.

Proof. Since E(ω0 − ω2|x|) = 0,

cov[(x+ εx)
2, ω0 − ω2|x|] = E[(x2 + 2xεx + ε2x)(ω0 − ω2|x|)]

= E(ω0x
2 − ω2|x|)

= Var[x]3/2ω0

∫ ∞
0

x2
2√
2π
e−

x2

2 dx

−Var[x]3/2ω2

∫ ∞
0

x3
2√
2π
e−

x2

2 dx
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Now we can use the same transformation as we did previously. Let s = x2.

E(ω0x
2 − ω2|x|3) = σ2xω0

2√
π

∫ ∞
0

s1/2e−sds−Var[x]3/2ω2
2
√

2√
π

∫ ∞
0

se−sds

= Var[x]ω0
2√
π

Γ(
3

2
)−Var[x]3/2ω2

2
√

2√
π

Γ(2)

= −Var[x]3/2
√

2

π
ω2.

where Γ is the gamma function and in the last step we use claim 1, ω0 = ω2

√
2
π
Var[x]3/2.

Proposition 2 ω̄0 → 1
2
Rω2E|x| = 1

2
Rω0.

Proof.

ω̄0 = −ω̄2(Var[x] +Var[εx])

= −Cov[(x+ εx)
2, ω0 − ω2|x|]

Var[(x+ εx)2]
(Var[x] +Var[εx])

=
ω2√
2π

Var[x]3/2

Var[x] +Var[εx]

=
1

2
Rω2E|x|

where in the third step, we use claim 3.

B Robustness checks

B γ u (%) ψ W (0)− ExW
x100

ExW
W (x)

1
2
γσ2x(%) R (%)

commitment yes no yes no yes no yes no yes no yes no

0.4 0.6 3.95 3.62 0.26 0.24 4.80 5.72 1.20 1.17 2.01 2.22 56 62

0.4 1.8 6.38 5.99 0.43 0.40 7.31 8.46 1.35 1.29 3.06 3.29 28 31

0.6 0.6 6.28 6.11 0.42 0.41 4.80 5.72 1.20 1.17 2.01 2.22 56 62

0.6 1.8 10.53 11.01 0.74 0.78 7.31 8.01 1.35 1.44 3.06 3.29 28 31

Table 3: Calibration results for fee/feu = 1.3
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B γ u (%) ψ W (0)− ExW
x100

ExW
W (x)

1
2
γσ2x(%) R (%)

commitment yes no yes no yes no yes no yes no yes no

0.4 0.6 3.08 2.84 0.37 0.34 4.09 5.53 1.29 1.25 1.57 1.65 44 46

0.4 1.8 4.72 4.48 0.58 0.54 6.04 8.00 1.51 1.44 2.32 2.39 22 22

0.6 0.6 4.82 4.69 0.59 0.57 4.09 5.53 1.29 1.25 1.57 1.65 44 46

0.6 1.8 7.60 7.85 0.95 0.99 6.05 8.01 1.51 1.44 2.32 2.39 22 22

Table 4: Calibration results for fee/feu = 1.75

γ 0.6 1.8

B 0.4 0.6 0.4 0.6

Commitment yes no yes no yes no yes no

u(1−B) 2.37 2.17 2.51 2.44 3.83 3.60 4.21 4.41

vK 3.86 8.38 3.77 8.16 5.73 12.09 5.47 11.44

(1− u) [Y (0)− ExY ] 1.93 2.14 1.88 2.09 2.86 3.09 2.74 2.93

X (%) 8.16 12.69 8.16 12.69 12.42 18.78 12.42 18.78

Table 5: Decomposition of output loss due to frictions for fee/feu = 1.3

γ 0.6 1.8

B 0.4 0.6 0.4 0.6

Commitment yes no yes no yes no yes no

u(1−B) 1.85 1.71 1.93 1.88 2.84 2.69 3.04 3.14

vK 3.05 7.36 2.99 7.22 4.43 10.48 4.30 10.11

(1− u) [Y (0)− ExY ] 1.52 1.60 1.50 1.57 2.22 2.28 2.15 2.20

X (%) 6.42 10.67 6.42 10.67 9.48 15.45 9.48 15.45

Table 6: Decomposition of output loss due to frictions for fee/feu = 1.75
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C Web Appendix

C.1 Flow conditions

A worker accepts any job offer with a wage above his current wage and consequently with

a mismatch indicator smaller than in his current job. Unemployed workers accept only

job offers with x < x. The unemployment rate in this economy is determined by the

following equilibrium flow condition

δ (1− u) + ρ = 2λx̄u+ ρu. (22)

The left hand side of (22) measures the inflow into unemployment. The first term reflects

workers who loose their job and the second term reflects the growth of the labor force

(new workers start as unemployed). The right hand side measures the outflow. The first

term is the number of workers who find a job and the second term captures the fact

that the inflow should exceed the outflow by ρu to keep unemployment at a constant

fraction of the workforce at the balanced growth (at rate ρ) path. So for ρ → 0 this is

just a simple steady-state flow equation. This relation can be simplified by defining the

parameter κ ≡ 2λ/ (ρ+ δ). Then,

u =
1

1 + κx
.

Let G [W (x)] ≡ 1 − Ĝ (x). Equation (8) follows from substituting (22) into the

following balanced growth equation,

2λx {u+ ψ(1− u) [1−G (x)]} − δ(1− u)G (x) = ρ(1− u)G (x) .

which tells us that the labor force grows at rate ρ and so does the mass of workers

who are employed at a distance x or less from their optimal job type. The first term on

the left is the inflow into this class and the second term is the outflow. Flows from one

smaller-than-x job to another cancel out. Equation (8) follows from substituting (22) into

the following balanced growth equation,

2λx {u+ ψ(1− u) [1−G (x)]} − δ(1− u)G (x) = ρ(1− u)G (x) .

which tells us that the labor force grows at rate ρ and so does the mass of workers

who are employed at a distance x or less from their optimal job type. The first term on

the left is the inflow into this class and the second term is the outflow. Flows from one

smaller-than-x job to another cancel out.
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C.2 Derivation of the Bellman equations under golden growth

A general way to derive V U and the free entry condition uses a simple accounting identity.

First we start with a general discount rate r, and then we let r approach the population

growth rate ρ from above.

At time 0,

uV U + (1− u)EV E +

∫ ∞
0

V Ue−rtdeρt = uV U + (1− u)EV E +

∫ ∞
0

e−rtV Uρeρtdt

=

∫ ∞
0

e−rteρt (uB + (1− u)EW ) dt

The first term on the first line is the total discounted value created by unemployed workers

at time 0; the second term is the total discounted value created by employed workers at

time 0; the third term is the total discounted value of all future generations, where each

new worker starts his career as an unemployed worker. The second line is an alternative

way to aggregate total value in the economy that equals the left hand side because workers

are risk neutral. It simply equals the discounted total value (expected wage income + B)

of all workers from t = 0 onwards. The above equality is essentially an application of the

Fubini theorem.

Simplifying the above equation yields,

uV U + (1− u)EV E + ρV U

[
1

ρ− re
(ρ−r)t

]∞
0

= (uB + (1− u)EW )

[
1

ρ− re
(ρ−r)t

]∞
0

V U + (r − ρ)
(
uV U + (1− u)EV E

)
= uB + (1− u)EW

Letting r ↘ ρ gives

ρV U = uB + (1− u)EW.

The derivation for the free entry condition is similar. Suppose that at time 0 the

population is 1 and the number of vacancies equals v. Denote the value of a filled job by

V J . Again, there exists an accounting identity for the total value created by firms in the

economy,

(1− u)EV J + vV V +

∫ ∞
0

e−rtVV ρ̂e
ρtdt =

∫ ∞
0

e−rteρt ((1− u)(EY − EW )−Kv)

where ρ̂ is the adjusted birth rate for vacancies (which is not important because in equi-

librium VV = 0). The expected value of the cross section of filled and vacant jobs should

2



equal the discounted sum of firm profits minus the amount of resources spent on vacancies.

Since under free entry the expected value of all current and future vacancies equals 0, we

get,

(r − ρ)(1− u)EV J = (1− u)(EY − EW )−Kv

Letting r ↘ ρ gives

vK = (1− u)(EY − EW ).

The derivation of V E(x) follows Gautier et al. (2010). The Bellman equation for the

asset value of employment for a worker employed in a job with mismatch indicator x reads

ρV E(x) = Ŵ (x) + 2ψλ

∫ x

0

[
V E (y)− V E (x)

]
dy − δ

[
V E (x)− V U

]
. (23)

Totally differentiating yields

(ρ+ δ)V E
x (x) =

Ŵx(x)

1 + ψx
.

The solution to this differential equation reads

(ρ+ δ)V E(x) =

x∫
0

Ŵx(y)

1 + ψy
dy + C0.

Integrating by parts yields

(ρ+ δ)V E(x) =
Ŵ (x)

1 + ψx
− Ŵ (0) +

x∫
0

ψŴ (y)

(1 + ψy)2
dy + C0.

Evaluation of this equation at x = 0 gives an initial condition that can be used to solve

for C0
C0 = Ŵ (0) + δV U .

Substitution of this initial condition yields

(ρ+ δ)V E(x) =
Ŵ (x)

1 + ψx
+

x∫
0

ψŴ (y)

(1 + ψy)2
dy + δV U . (24)

Define ExW =
∫ x
0
Ŵ (x) dĜ (x). By equation (8), we have

x∫
0

ψŴ (y)

(1 + ψy)2
dy =

ψx

1 + ψx
ExW.
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Using this expression and V U = V E(x) to evaluate equation (23) at x yields

ρV E(x) =
Ŵ (x) + ψxExW

1 + ψx
=
uŴ (x) + ψ (1− u)ExW

u+ ψ (1− u)
. (25)

Equation (23) and V U = V E(x) imply

2ψλ

∫ x

0

[
V E (x)− V U

]
dx = ρV U(x)− Ŵ (x) .

Substitution of this expression into the Bellman equation for ρV U yields

ρV U = B + 2λ

∫ x

0

[
V E (x)− V U

]
dx =

B + xExW
1 + x

= uB + (1− u)ExW, (26)

where the final step uses u = 1/ (1 + x̄).

Finally, consider the free entry condition. Define EGY ≡
∫ x
0
g (x)Y (x) dx and EGW ≡∫ x

0
g (x)W (x) dx, then,

K = 2λ

∫ x

0

{u+ ψ (1− u) [1−G (x)]} Y (x)−W (x)

ρ+ δ + 2ψλvx
dx

=
1− u
v

(EGY − EGW ) . (27)

The term, u + ψ (1− u) [1−G (x)] is the effective labor supply for a type x match. The

second term gives the value of a filled vacancy. It discounts current revenue Y (x)−W (x)

by the discount rate ρ plus the separation rate δ plus the quit rate 2ψλx. The final line

follows from substituting in (8) and (x̄ = (1− u) /u). This implies that the resources spent

on vacancy creation, vK, must in a steady-state equilibrium be equal to the employment

rate (1− u) times the expected profit of a filled vacancy, (EGY − EGW ).

C.3 Derivation of wages

This derivation summarizes the results in Gautier et al. (2010). Conditional on x, firms

choose a wage that maximizes the value of a vacancy,

arg max
W

({
u+ ψ (1− u)

[
1− Ĝ (W )

]} Y (x)−W
ψκxF̂ (W )

)

The FOC with respect to W reads

0 = − ψ (1− u)Gx/Wx

u+ ψ (1− u)
[
1− Ĝ (W )

] − ψκxFx/Wx

ψλxF̂ (W )
− 1

Y (x)−W ,
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where we use ĜW = Gx/Wx and F̂W = Fx/Wx. Using Fx = 1/x and some rearrangement

yields,

Wx = −

 ψ (1− u)Gx

u+ ψ (1− u)
[
1− Ĝ (W )

] +
ψκ

1 + ψκx

 [Y (x)−W ] . (28)

Use (8) and its derivative with respect to x to write,

ψ (1− u)Gx

u+ ψ (1− u)
[
1− Ĝ (W )

] =
ψκ

1 + ψκx
,

and substitute this back in (28) to get

Wx (x) = −2ψκ (Y (x)−W (x))

1 + ψκx
.

This equation is almost identical to equation to the one for no commitment except that

the "2" is replaced by a "1" (at the margin the hiring and no quit premia are equal and

under no commitment there are no hiring premia). For the solution of the differential

equation we refer to Gautier et al. (2010).�

C.4 Wages and expected wages

Here we combine γ and κ into one parameter ζ (as we do in our matlab program). Define,

γ ≡ κ2ζ, x ≡ z/κ, and x̄ = z̄/κ. Note that we can switch back and forth between the

model in terms of (x, γ) and (z, ζ) by the fact that γVar[x] = ζVar[z]. G(x) is given by,

G (x) = 1− x− x
(1 + ψκx)x

.

Substitution of the expressions for x and x̄ in (21) shows that Ĝ (z) satisfies

Ĝ (z) = 1− z − z
(1 + ψz) z

.

The value of z̄ follows from (7), using 1− u = z̄/ (1 + z̄) and V E(x̄) = V U . Substituting

those variables in the wage equations (18,19) of Gautier, Teulings yields,
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commitment

Ŵ (z) = 1− ζ
[(

1 + ψz

ψ

)2
log

(
1 + ψz

1 + ψz

)
− z

ψ

(1 + ψz)2

1 + ψz
+
z

ψ
+

3

2
z2

]
, (29)

EzW =

∫ z

0

g (z) Ŵ (z) dz

= 1−
∫ z

0

1 + ψz

z (1 + ψz)2
ζ

[
−
(

1 + ψz

ψ

)2
ln

(
1 + ψz

1 + ψz

)
− z

ψ

(1 + ψz)2

1 + ψz
+
z

ψ
+

3

2
z2

]
dz

= 1− ζ 1 + ψz

ψ3z

∫ ψz

0

1

(1 + q)2

[
− (1 + q)2 ln

(
1 + q

1 + ψz

)
− ψz (1 + q)2

1 + ψz
+ q +

3

2
q2

]
dq

= 1− ζ 3

ψ3z

[
ψz +

1

2
ψ2z2 − (1 + ψz) ln (1 + ψz)

]
.

The expression for ζ can be derived from combining z = 1−u
u
, (6) and (7)

ζ =
2ψ3 (1−B) (1 + z)(1 + ψz̄)

6(1− ψ)(1 + ψz)(1 + z) ln(1 + ψz)− ψz
[
6(1 + z) + 3ψ(2− z)(1 + z) + ψ2z(4 + 3z)

] .
non-commitment

Ŵ (z) = 1− ζ
[

1 + ψz

ψ2
ln

(
1 + ψz

1 + ψz

)
− z − z

ψ
− 1

2
z (z − 2z)

]
, (30)

EzW =

∫ z

0

g (z) Ŵ (z) dz

= 1−
∫ z

0

1 + ψz

z (1 + ψz)2
ζ

[
1 + ψz

ψ2
ln

(
1 + ψz

1 + ψz

)
− z − z

ψ
− 1

2
z (z − 2z)

]
dz

= 1− ζ 1 + ψz

ψ3z

∫ ψz

0

1

(1 + q)2

[
(1 + q) ln

(
1 + q

1 + ψz

)
− q + ψz − 1

2
q (q − 2ψz)

]
dq

= 1− ζ 1 + ψz

ψ3z

[
−1

2
ln2 (1 + ψz) + ψz ln (1 + ψz)− 1

2

ψ2z2

1 + ψz

]
,

Again, ζ can be derived from z = 1−u
u
, (6) and (7),

ζ =
2ψ3 (1−B) (1 + ψz̄) (1 + z)

ψ2 (1 + ψz) (1 + z) z2 + z̄2 − (1− ψ) (1 + z)2 [2ψz − ln (1 + ψz)] ln (1 + ψz)
.

C.5 Variance of x

Var [x] =

∫ x

0

x2g (x) dx =
1 + ψx

x

∫ x

0

x2

(1 + ψx)2
dx =

1 + ψx

ψ3x

∫ ψx

0

x2

(1 + x)2
dx (31)

=
ψx (2 + ψx)− 2 (1 + ψx) log (1 + ψx)

ψ3x
.
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C.6 Measuring γ

Let Ỹ (s, c) be the productivity of an s-type worker in a c-type job. We can adjust the

production function to be increasing in s, as follows,

ln Ỹ (s, c) = s− 1

2
γ (s− c)2 = s− 1

2
γx2. (32)

The optimal assignment c (s) for worker type s solves the first-order condition ln Ỹc [s, c (s)] =

0, implying that c (s) = s. This specification exhibits all features discussed in Sec-

tion 3.1. First, in the Walrasian equilibrium, all workers are assigned to their opti-

mal job type, c (s) = s (and hence x = 0) and wages are equal to output. Hence

ln Ỹ (s, s) = ln Ŵ (s) = s, see equation (10). Second, the function Ỹ (s, c) exhibits

absolute and comparative advantage which is required for the derivation of ŝ and ĉ as

discussed in Section (3.1).22 Third, the Mincerian rate of return to skill dEx [lnW ] /ds is

equal to one. Finally, the parameter γ in equation (32) is equivalent to the parameter γ

in equation (1) by applying a second-order Taylor expansion to Y (x) and Ỹ (s, c), around

the optimal assignment, x = 0: γ = Y ′′ (0) /Y (0) = Ỹcc (c, c) /Ỹ (c, c). The parameter γ

measures the curvature of Rosen’s (1974) well known hedonic system where the isoprofit

curve and the indifference curve of the worker are tangent to the locus of market wages

and the indifference curve of the worker. This curvature, the second derivative of the

production function, is a measure of both the productivity loss due to mismatch and the

elasticity of substitution between various workers types. Note that the dimension of this

curvature parameter γ corresponds to that of the mismatch indicator x used in Section

(3.1) since the Mincerian rate of return to s is equal to unity in the optimal assignment:

ln Ỹs (s, s) = 1.

C.7 Constructing skill and job complexity levels

We run the following two regressions

lnW = β~j + εs + εw, (33)

lnW = α~k + εc + εw,

where ~j and ~k are vectors of observed worker and job characteristics respectively, where

εs and εc capture unobserved worker and job characteristics respectively, and where εw
22Comparative advantage requires the cross derivative of lnY (s, c) to be positive; absolute advantage

requires the first derivative of lnY (s, c) with respect to s to be positive for any c. The latter is not

globally satisfied for this polynomial specification, but it is in the optimal assignment s = c.
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captures the effect of non-optimal assignment on wages and measurement error in wages.

It is convenient to normalize our data on lnW, ~j and ~k such that they have zero mean.

Hence, it does not make sense to include a constant in these regressions. The estimated

parameter vector can then be used to construct indices for the observed worker and job

characteristics ŝ ≡ β~j,and ĉ ≡ α~k. The non-linearities in the relation between lnW on

the one hand and
−→
j and

−→
k on the other are captured by a proper normalization. Then,

the skill index s and the job index c satisfy,

s = ŝ+ εs,

c = ĉ+ εs,

Both indices ŝ and ĉ have zero mean by construction and are uncorrelated to the unob-

served components εs and εc, respectively.23

23We apply the following iterative procedure such that if we regress lnW on both s̄ and s̄2 that the

coeffi cient of the second-order term s̄2 is zero. First, run lnW = χ1 ŝ1 +χ2ŝ1
2 + εs1, where ŝ1 is E(s|~j)

constructed from (33) and where εs1 = s− ŝ1. Second, we construct a new variable ŝ2 = χ1ŝ1 +χ2 ŝ
2
1−

E
[
χ1ŝ1 + χ22ŝ1

]
and rerun the first regression after substituting s̄2 for s̄1. We repeat these steps until

χ2 = 0. The same applies to our regression for c̄. This algorithm therefore normalizes s in such a way

that any correlation between ŝ and εs is eliminated.
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