

Wages, search frictions & sorting Where do we stand? Where should we go?

Keynote speech LEED conference Coimbra 14 July 2017

Menu of the day

- 1. B&M and the sage of Sisyphos
- 2. Lessons from David Ricardo
- 3. When the recession hits...
- 4. The enigma of the minimum
- 5. Future avenues for research

The sage of Sisyphos

The sage of Sisyphos

"In Greek mythology **Sisyphos**, the king of Corinth, was punished for his self-aggrandizing craftiness by being forced to roll an immense boulder up a hill, only to watch it come back to hit him, repeating this action for eternity." Wikipedia

A perfect metaphor for labour market search:
Climbing the hill of rents by j-t-job mobility
... only to be thrown off by a subsequent lay off

The perfect Sisyphos equivalent

- Selecting jobs from a constant offer distribution
- = climbing the hill of rents
- Being laid off at a constant rate
- = being pushed off
- ... an that as an eternal cycle

Predictions

- Wage growth while climbing the hill
- Wage decline when falling off

Joint work with Axel Gottfries (2016)

Concepts

- Calendar time *t* vs. Labour market time λ_t
- Employment Cycle: period between subsequent lay offs
 - t = 0: normalized to the start of the employment cycle
 - □ t = a, b: start, end date current job (hence: a < t < b)
- $\Box \Lambda_t = \text{sum over Employment Cycle of } \lambda_t$
- Problem: # offers unobserved

Results

- 1. Λ_b measures # offers, best proxy match quality
- 2. Λ_a provides no extra information
- 3. Λ_a/Λ_b uniformly distributedReason: arrival rate max purely random

- Regression equation
 - $\square InW_t = \alpha_0 + \alpha_1 . u_t + \alpha_2 . In\Lambda_b + \alpha_3 . Dummy quit$
 - Worker fixed effects
 - Controlls experience & tenure
- □ What identifies $In\Lambda_b$? 2 sources of variation
 - 1. Difference between labour market & calendar time
 - 2. Random lay off shocks
- Why functional form $In\Lambda_b$? Pareto distribution
 - α_2 = std.dev. distribution
 - □ Selectivity quits, hence: $\alpha_3 = -\alpha_2$

Regression on log wages

By Employment cycle

Variable	Coef	Std.err	Variable	Coef	Std.err
u _t	-0.012	.002	Dummy quit	-0.042	0.007
Cycle 1	0.121	0.011	Cycle 6	0.113	0.010
Cycle 2	0.120	0.008	Cycle 7	0.095	0.012
Cycle 3	0.123	0.007	Cycle 8	0.075	0.012
Cycle 4	0.111	0.008	Cycle >8	0.059	0.010
Cycle 5	0.097	0.009			

By Employment Length

Low Edu.

Source	Variance
1. Length cycle	0.0075
2. # offers conditional length cycle	0.0016
3. Quality of best offer (= $\alpha_2^2 \pi^2/6$)	0.0176
1.+2.+3. Total variance search	0.0266
Total variance log wages	0.2970
Share due to search	9%

Conclusions

- 1. Strong confirmation B&M
 - By both sources of variation
 - Stability of offer distribution over life cycle
 - Uniform distribution of arrival of max
- Wage offers distribution = Pareto
 Unbounded upper support!
- 3. Search explains 9% of wage dispersion
- Question: what are sources of heterogeneity?
 Assignment frictions?
 - □ Rents?

Comparative Advantage Theory

Classical theories of international trade argued that nations gain mutual benefits by specializing in producing goods with lower opportunity costs.

David Ricardo refuted Adam Smith's absolute advantage theory: when a country could produce every good more efficiently than another nation, it would maximize those goods' productions. Ricardo formalized Robert Torrens' comparative advantage idea, in his On the Principles of Political Economy and Taxation (1817), using a classic example of trading English cloth and Portuguese wine.

Altho Portugal produced both goods with less labor input than did England, their relative costs differed: very hard to make English wine, less difficult to produce cloth. Thus, Portugal should produce excess wine, and trade it for English cloth. England benefits from free trade because its cost of producing cloth is unchanged, but English now drink wine at closer to the cost of cloth.

- What is necessary conditions for sorting?
 - Supermodularity?
 - Log supermodularity?
- David Ricardo:

Portugal produces wine while England produces cotton because Portugal is <u>relatively</u> more productive

Log output per worker s commodity/job c

□
$$y(s,c) = \alpha \ s - \frac{1}{2} \ \gamma \ (s-c)^2$$

□ Absolute advantage: $y_s(s,c) = \alpha - \gamma (s - c) > 0$

- ... better workers more productive in any job
- Comparative advantage: $y_{sc}(s,c) = \gamma > 0$
- Description of the second s
- In the second second

- Firms minimize cost per unit of output
 - Cost per unit of output: InW(s) y(s,c)
 - First order condition F.o.c.:
 - $\square InW'(s) = y_s(s,c) = \alpha \gamma (s-c)$
 - \square *InW'(s)* = return to h.c. (= human capital)
 - Optimal allocation c(s) solves F.o.c.
- Return to h.c. increasing in optimal job c(s)
 Keeping s constant

- □ Suppose $c(s) = s + C_0$ (mean shifter)
- Return to education & net demand for h.c.
 - $\Box C_0 = c(s) s = \text{measure of net demand for h.c.}$
 - Upward mean shift of C_0 : higher return to h.c.
- Non-identification
 - Hence: perfect correlation s and c(s)
 - Non-identified when both are in regression
 - Unobserved part of s proxied by c
 ... and the other way around
 - Estimates have no structural interpretation

A source of confusion

- □ Zero profit condition: InW(s) = y[s,c(s)]
- y(s,c) reaches a max at c = c(s), hump shaped
 ... job types beyond c(s) yield lower output
- "Better" jobs might yield "lower" wages!
- Why consistent with absolute advantage?!
 - Because each job type produces its own output
 - ... which therefore has an endogenous price P(c)
 - □ Log nominal output = y(s,c) + lnP(c)
 - Ignored by many economists!

InW(s), y(s,c)

- Identification y(s,c) problematic
 We only observe optimum y[s,c(s)]
 ... not out-of-equilibrium-point y(s,c)
- A&K&M(1999), Card&H&K(2013)
 - Worker + firm fixed effects
 - ... explain 97% of variance log wages
 - Why adding non-linear terms?
- 3 problems
 - 1. Log additive, not log supermodular
 - 2. Non-identified
 - 3. Jobs within a firm homogeneous

InW(s), y(s,c)

- □ Joint work with Pieter Gautier (2006), (2015)
- Quadratic terms in wage regression
 - 1. Construct s and c
 - 2. $InW = \beta_0 + \beta_1$.(h.c. variables), $s = \beta_1$.(h.c.)
 - 3. Similar for *c*
 - 4. $InW = \alpha_0 + \alpha_1 \cdot s + \alpha_2 \cdot c + \alpha_3 \cdot (s c)^2$
- Note: linearity is not a restriction!
 Step 2 can accomodate any non-linearity

Regression on log wages

Almost all coefficients highly significant

Country	S	С	S ²	<i>c</i> ²	SC
US	0.61	0.66	-0.17	-0.17	0.43
France	0.60	0.61	-0.39	-0.25	0.62
Germany	0.58	0.86	-0.38	-0.17	0.17
Netherlands	0.57	0.72	-0.05	-0.05	0.40
Portugal	0.66	0.61	-0.11	-0.11	0.29
UK	0.77	0.59	-0.53	-0.53	0.82

Testable restrictions for each country

- Sum 1st order coefficients > 1
- 3 sign-restrictions on 2nd order coefficients
- Cross term equal to sum of 2 square terms
- Biased?
 - α_1 and α_2 biased due to non-identification
 - α_3 not: $(s c)^2$ uncorrelated to s and c
 - \square ... if 3rd moments = 0
 - which is true for symmetric distribution

Conclusions

- 1. Sorting / log supermodularity matters
- 2. ... but cannot explain all search frictions
 Would yield bounded upper support
- 3. Card&H&K(2013) linearity conclusion?
 - Holds in a Walrasian equilibrium
 - ... but not in world with search frictions
 - Question: why do we <u>not</u> find non-linearity?

- Again, joint work with Axel Gottfries (2017)
- B&M wage posting model
 - Hiring and retention premiums
 - Wage increasing function of match quality
 Hence: j-t-j transition are efficient
- Long standing problem of wage rigidity
 Wage posting is useful tool for analysis

The carrot of hiring & retention premiums

Wage posting and wage rigidity
 Posted wage = commitment to fixed wage
 Needed as a carrot for hiring and retention
 Wage rigidity needed for commitment (?)
 Coles(2001),Moscarini-PV(2012),Gottfries(2017)
 Hiring premium superfluous after hiring
 Hence more difficult to commitment

Assumptions

- 1. Downwardly rigid wages in ongoing jobs
- 2. Full wage flexibility in new jobs
- 3. Only retention premiums
- Hence: less j-t-j transitions in downturn
 Inefficient!

Unlike PV&Robin(2000) & Nash bargaining models

- Previous research on wage flexibility
 - Bils(1985): u-rate at data of hiring
 - Beaudry(1991): minimum u-rate since hiring
 - Both: no/small effect current u-rate
 - Hagedorn&Manovski(2012) critique
 - Addressed by our mismatch indicator

- Regression equation (similar to before)
 - $\square InW_t = \alpha_0 + \alpha_1 . In\lambda_b + \alpha_2 . In\Lambda_t + \alpha_3 . min[In\lambda_s]$
 - $\square InQuit_{t} = \beta_{0} + \beta_{1} . In\lambda_{t} + \beta_{2} . In\Lambda_{t} + \beta_{3} \{ \max[In\lambda_{s}] In\lambda_{t} \}$
 - \Box s = any time during job spell
 - \square λ_t is close to u_t^{-1}
- Coefficients derived from known transition rates

$$\alpha_1 = 0, \, \alpha_2 < 0, \, 0 < \alpha_3 < 1$$

$$\beta_1 = 1, \beta_2 = -1, \beta_3 < -1$$

Why 0 < α₃ < 1? Foresight downturn by firms
 Explains puzzle of low wage flexibility

Variable	InW _t	InW _t	In Quit _t	In Quit _t
lnλ _t	0.063	0.029	0.319	0.779
	(0.015)	(0.015)	(0.128)	(0.150)
$In\Lambda_b$ / $In\Lambda_t$	0.109	0.105	-0.806	-0.637
	(0.005)	(0.006)	(0.033)	(0.041)
$\max[\ln \lambda_s]$		0.152		-1.577
		(0.025)		(0.198)

- Regressions do not controll for tenure
 - Does not matter for wages
 - Matters for quits
 - Conclusion less clear cut with tenure controlls
 - However: max[$In\lambda_s$] remains significant
- On balance, strong confirmation of model
 Both in sign of coefficients
 ... and in their magnitude

Do firms pay hiring premiums?

- Implication
 - Buffer for upward adjustment
 - Firms don't find it in their interest to increase wages
- Hence

Current wages should depend partly on hiring wage
 ... and less on highest wage since date of hiring
 ... the more so for small increases in λ_t

Variable			
In λ_t	0.059	0.015	0.013
	(0.015)	(0.015)	(0.015)
In λ_a	0.068	-0.004	-0.096
	(0.019)	(0.021)	(0.046)
$ln \Lambda_t$	0.098	0.088	0.088
	(0.004)	(0.004)	(0.005)
min[<i>lnλ</i> _s]		0.226	0.320
		(0.024)	(0.048)
$(\min[\ln\lambda_s] - \ln\lambda_a)^2$			-0.189
			(0.085)

- Conclusions from empirical results
 - 1. Downwardly rigid wages in ongoing jobs
 - 2. Inefficiently low transitions during downturn
 - 3. Firms pay only retention premiums
- Macro-economic implications
 - No hiring premiums, too low wages(?)
 Gautier, Teulings & Van Vuuren (2010)
 - 2. Wage rigidity hampers vacancy creation
 - By inefficiently low poaching
 - 3. Overshooting in downward wage adjustment

Extensive policy debate on minimum wages

- Recent introduction in Germany
- Large increases in Brazil
- Planned increase in UK
- Debate on increase in US

Remarkably, it is no longer a left wing topic

- Some relevant papers
 - Dinardo/Fortin/Lemieux(1996): institutions!
 - Lee(1999), Teulings(2003)
 - large effect on wage distribution
 - Minimum explains rise inequality in US during '80s
 - Autor/Manning/Smith(2016) some nuances
 - Dube/Lester/Reich(2010)
 - Small employment effects
 - Engbom/Moser(2016) for Brazil

- General conclusions
 - Institutions matter
 - Rising profit share due to excess liberalization?
- Conclusions on minimum wage
 - 1. Small, or even positive employment effects
 - 2. Substantial spike at the minimum
 - 3. Substantial spill-overs
- 2 potential explanations
 - 1. Walrasian / comparative advantage
 - 2. B&M search model

Optimal assignment

Log wage function

- Predictions introduction of minimum wage
 - 1. Disemployment at bottom end, but small
 - 2. For same s: lower c(s)
 - The more so at the bottom
 - Not at all at the top
 - 3. Hence: flatter wage schedule
 - In particular at the bottom, not at all at the top
 - 4. Higher wages at the bottom, lower at the top
 - Since substitution effects sum to zero
 - 5. Higher employment effect just above minimum

- Job search model with only retention
 - F ~ U(0,1): mismatch indicator of a job
 F = Pr[draw from offer distribution is better]
 - Value of job J[W(F)]
 - $\Box (\rho + \delta + \lambda.F) J[W(F)] = X(F) W(F)$
 - □ Lowest wage: $(\rho + \delta + \lambda) J(W^{min}) = X(1) W^{min}$
 - □ Simple case: all firms equal X(F) = X
 - Equal profit condition $J[W(F)] = J(W^{min})$
 - $W(F) = [\lambda (1-F) X + (\rho + \delta + \lambda.F) W^{min}]/(\rho + \delta + \lambda)$
 - Lower F, lower impact W^{min}

Evaluation

Walras can explain low disemployment,
 ... not positive employment effects
 Higher W^{min}, lower profits
 Lower incentives for search for firms
 ... but higher for workers
 Firms pay only retention premiums?
 Inefficiently low incentives for workers
 Gautier/Teulings/VanVuuren(2010)

Might a low minimum wage raise welfare?

Future avenues for research

Future avenues for research

- Does G&T hold for other countries?
- Card&H&K(2013) consistent with results?
 - Job versus firm heterogeneity
 - \square In Λ_t as individual mismatch indicator
 - Lentz-ratio u-t-j/j-t-j hiring as firm mismatch indicator
 - Quadratic terms for mismatch
- Employment, search, and minimum wages